
PeT Guide

by Simone Rota

Release 0.3.2

Contents

I. Using PeT 4

1. Introduction 5

1.1. What is PeT? . 5
1.2. Why PeT? . 5

1.3. History . 5

1.4. Authors . 6

1.5. Acknowledgements . 6
1.6. License . 6

1.7. Notes and disclaimer . 6

1.8. Legal Notices . 7

2. Installation 8

2.1. Obtaining PeT . 8

2.2. System requirements . 8
2.3. Installation and first run . 8

3. User Interface 9

3.1. Organization of the Interface . 9

3.2. File Operations . 10

3.3. Drawing the net . 10
3.3.1. Adding and connecting components 10

3.3.2. Undo actions . 11

3.3.3. Editing values . 12

3.3.4. View options . 13
3.3.5. Colors . 13

4. Simulation 14

4.1. Types of simulation . 14

4.2. Starting the simulation . 14

5. Plugins 15

5.1. What is a plugin? . 15

5.2. General usage . 15
5.3. Algebric Representation . 15

5.3.1. Show Matrices . 15

2

Contents Contents

5.4. Behavioural Analyis . 17
5.4.1. Boundedness . 17
5.4.2. Coveracility / Reachability tree . 17
5.4.3. Liveness . 17
5.4.4. Reversibility . 17
5.4.5. Summary of properties . 17
5.4.6. Merge nets . 17

5.5. Classification . 17
5.5.1. Free choice, State Machine, Marked Graph 17

5.6. Control . 17
5.6.1. Invariants based supervisory control 17
5.6.2. Siphons Control . 17

5.7. Generation . 17
5.7.1. Generate from matrix . 17
5.7.2. Structural Analysis . 17
5.7.3. Invariants, Siphons, Traps . 17
5.7.4. Reachability / Coverability Graph 17
5.7.5. Traps and siphons . 18

II. PeT Developer’s guide 19

6. PeT Architecture 20
6.1. Required and optional software . 20
6.2. The base packages . 20
6.3. The plugin architecture . 20
6.4. Additional files for distribution . 20
6.5. Developement ideas . 20

7. A simple plugin example 21
7.1. Preliminary notes . 21
7.2. Setting up the environment . 21
7.3. Extending the Plugin Interface . 21
7.4. Rendering the Configuration . 21
7.5. Working on the net . 21
7.6. Rendering results . 21
7.7. Exporting results . 21
7.8. Summing it up . 21

3

Part I.

Using PeT

4

1. Introduction

WARNING: this documentation is NOT complete and could be out of date.

1.1. What is PeT?

PeT, short for Petri Tools, is a Free and multiplatform program for layout and analysis
of Petri Nets. It consists of a visual editor to create the net layout and a set of analysis
tools that can be easily extended by third party developers.

1.2. Why PeT?

There is a good number of Petri Net tools available on the Web[1], and some of them
are really good. Still I wanted to create a tool with the following characteristics:

• Multi-platform

• Free and Open Source

• Good looking

• Easily extensible

Hitting the first two targets was only a matter of choosing the appropriate programming
language (Java) and license (GNU GPL). For the ”good looking” aspect I decided to use
the SWT (Sandard Widget Toolkit) by IBM/Eclipse[2], obtaining a native aspect on
different Operating Systems.

Last, I hope the Plugin Architecture of PeT would facilitate the developement of
addons.

1.3. History

PeT is the project for the final exam of my Laurea in Ingegneria Informatica at Politec-
nico di Milano. The relator for the project is Prof. Luca Ferrarini. This program is part
of a collection of educational tools and studies related to the exams of ”Automazione
Industriale” and ”Modellistica e controllo dei sistemi discreti” at Politecnico di Milano.

The idea of PeT came from a previous project for the Automazione Industriale exam
with Prof. Ferrarini. The project, named poliJARP, consisted in some extension to the
JARP tool[4].

5

1.4. AUTHORS CHAPTER 1. INTRODUCTION

1.4. Authors

• Simone Rota <sip@varlock.com> is the main author of PeT, the default plugins
and the Documentation (including this file).

• Portions of code adapted from JARP[4] by Ricardo Sangoi Padilha, see the source
files for details.

• Default Analysis plugins adapted from previous work by Francesco Cartella, Si-
mone Civati, Giovanni Caria.

• Reachability and Liveness plugins adapted from Giuseppe Rizzo’s work.

1.5. Acknowledgements

I would like to thanks the following persons, which greatly contributed to PeT with
ideas, corrections and support:

• Prof. Luca Ferrarini - relator of the project.

• Ing. Adamo Castelnuovo, Ing. Carlo Veber - co-relators, testing.

• *** students

1.6. License

PeT is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

See the LICENSE.txt file included in the source and binary package for the complete
license text.

1.7. Notes and disclaimer

I’m not a professional developer, I cannot guarantee on the quality of the code contained
in PeT. Corrections, suggestions and contributions are welcome. Furthermore, as stated
in the license file:

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

6

1.8. LEGAL NOTICES CHAPTER 1. INTRODUCTION

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

1.8. Legal Notices

Linux is a Registered Trademark of Linus Torvalds; Java is a registered trademark of
Sun Microsystems, Inc. Microsoft, Windows, Windows 95, Windows 98, Windows ME,
Windows NT, Windows 2000, and Windows XP are registered trademarks of Microsoft,
Inc.; FreeBSD is a registered trademark of Walnut Creek CDROM, Inc.; Mac OS is a
registered trademark of Apple Computer, Inc.

All trademarks are property of their respective owners.

7

2. Installation

2.1. Obtaining PeT

At the moment I’m writing there is not an official website for the software, The files are
hosted at the authot’s personal site http://www.varlock.com. Binaries for Windows
and Linux and the sources are available.

2.2. System requirements

The software requirements for running PeT are essentially two:

• TODO

2.3. Installation and first run

There’s really not much to do regarding the installation process: PeT files are self-
contained in the distribution archives.

Generally you’ll want to extract the archive to a folder on your hard drive, then fun
the PeT.exe file (on Windows) or PeT.sh (on Linux / other platforms).

On Linux / other you’ll most likely have to edit the PeT.sh file to adjust the location
of your Java installation.

8

3. User Interface

3.1. Organization of the Interface

Figure 3.1.: The main window

Apart from the ”traditional” Menu and Toolbar elements (we’ll discuss them in the
following sections), it must be noted that PeT’s window is divided in 3 main areas that
can be shown or hidden using the toolbar on the left of the window:

9

3.2. FILE OPERATIONS CHAPTER 3. USER INTERFACE

Net: the area containing the drawing of the Petri Net

Plugins: a categorized tree containing the availabe Plugins

Results: this area will contain the results of the plugin launch.

3.2. File Operations

The File menu (or in alternative the first set of buttons on the main toolbar) contains
the usual file operations:

New: create a new file

Open: open a file

Save: save the current file

Save as: save the current file with the given filename

PeT’s interface can handle opening multiple documents, which are accessible from the
tabs at the top of the Net Area:

Figure 3.2.: The documents tab

PeT can also export the current net as an image (available formats: PNG, GIF and
EPS); this function is available from the File -> Export menu.

The supported file format for saving and loading Petri Nets is PNML[7], a proposed
standard for Petri Nets, based on XML[8].

3.3. Drawing the net

3.3.1. Adding and connecting components

After creating a new file, in order to add Places, Transitions and comments to the current
net click on the toolbar buttons or on their equivalent on the File -> Insert menu and
click on the point of the net you want the element to be inserted.

Place: insert a place

Transition: insert a transition

Comment: insert a comment

Area: insert a dotted-area (useful to highlight group of items)

Select: normal behaviour, for selecting already placed items

10

3.3. DRAWING THE NET CHAPTER 3. USER INTERFACE

Figure 3.3.: Connecting two components

Figure 3.4.: Adding a point to an arc

Once you placed two or more components in the Net Area, you can drag them around
with the mouse; by pressing the Shift key the movement is orthogonal and only one
direction at a time is allowed (North-South or East/West).

Some components (i.e. the dotted areas) can be resized dragging the handles around
them.

To draw an arc from a place to a transition (or vice-versa), right-click with the mouse
on the source of the arc and drag the mouse to the target component. (Fig. 3.3).

Right-click on an arc and drag the mouse to add a point to its path, as in Fig.3.4
(useful for complex paths). Right-clicking on one of the points of the path will remove
the point. The default path style is a Bezier line; you can easily change the line style
to orthogonal by middle-clicking anywhere on the arc or by clicking on the arc while
holding the Shift key. In Fig. 3.5 the two styles are compared.

3.3.2. Undo actions

Another set of well known commands is accessible from the Edit menu:

11

3.3. DRAWING THE NET CHAPTER 3. USER INTERFACE

Figure 3.5.: Path Style (Orthogonal - Bezier)

Figure 3.6.: Changing the token number

Undo: undo last action

Redo: redo last action

Cut: cut the seected components

Copy: copy the selected components into the clipboard

Paste: paste the content of the clipboard onto the current Net

Delete: delete the selected components

3.3.3. Editing values

To edit a Place/Transition name or a comment, just double click on the element, an
input box will appear in which you can modify its properties, i.e. the number of tokens
in a place (see Fig.3.6) or the weight of an arc.

When changing the properties of an arc, a ”Create self-loop” button is available in the
property editor; can be used to create a self-loop (automatic generation of an arc with

12

3.3. DRAWING THE NET CHAPTER 3. USER INTERFACE

source and target inverted respect to the currently selected arc).

3.3.4. View options

While editing the net, the following additional tools are available in the main toolbar:

Zoom In: zoom in the net

Zoom Out: zoom out the net

Zoom Reset: Reset the zoom value to its original size

View Grid: show/hide the background grid

View labels: show/hide the places / transitions names

3.3.5. Colors

Border and background color for the items is customizable by selecting one or more
elements and clicking on the following toolbar buttons:

Border: set the border color

Background: set the background (fill) color

13

4. Simulation

4.1. Types of simulation

With Simulation we intend letting the Petri Net evolve, keeping trace of the reached
states and fired transitions. We can make the net evolve automatically (randomly firing
active transitions) or manually choose the transition we want to fire clicking on it with
the mouse.

The commands in the Simulation menu, also available from the toolbar, are the fol-
lowing:

Start: start the simulation. The automatic simulation is the default one.

Stop: stops the simulation.

Reset: bring the net to the initial state

4.2. Starting the simulation

When choosing the automatic simulation, a prompt dialog asks for the interval (in mil-
liseconds) between the firing of two transitions. The default value is 500.

When the simulation ends (or the user presses the Stop button), a list of reached
markings is shown in the Results Area. Click on a marking to assign it to the net.

The top-right button in the Results Area brings up a menu containing export functions
(Matlab format).

14

5. Plugins

5.1. What is a plugin?

A plugin is a piece of code that can be ”plugged” into PeT, making an additional set of
functions available to the program.

A plugin could do almost everything with the current opened Petri Net(s): analyze its
structure, make it evolve, etc. We included a good number of plugins covering the main
aspects of Petri Net analysis, hoping to raise some interest into writing others. You can
found more information on writing plugins in Part II of this book.

5.2. General usage

The Plugin Area, as described in Section 3.1, contains a tree of available plugins, divided
into categories. Each plugin provides a quick online description page that can be acti-
vated by clicking on the ”Info” tab at the bottom of the plugin area, as shown on Fig.
5.1.

To activate a plugin, double click on its name, the ”Options” tab will appear to let the
user configure the options1 for the selected plugin. (Fig. 5.2)

Once the options are configured, press the start button to launch the plugin on the
currently active net. When the plugin terminates its execution, the Results Area will
be shown (if not already visible) with significant data acquired during plugin execution.
(Fig. 5.3)

Many plugins provide an export function to permanently save the results to a file (i.e.
Matlab); this function can be accessed with the ”Export”button located at the top-right
corner of the Results Area.

The following paragraphs contain a brief description of the plugins shipped with the
current version of Pet.

5.3. Algebric Representation

5.3.1. Show Matrices

This is a simple plugin (also used as developement example in Chapter 7) that displays
the

1Not every plugin needs options; plugins that does not require configuration will simply show a blank

configuration area.

15

5.3. ALGEBRIC REPRESENTATION CHAPTER 5. PLUGINS

Figure 5.1.: Online Help

Figure 5.2.: Online Help

16

5.4. BEHAVIOURAL ANALYIS CHAPTER 5. PLUGINS

Figure 5.3.: Online Help

5.4. Behavioural Analyis

5.4.1. Boundedness

5.4.2. Coveracility / Reachability tree

5.4.3. Liveness

5.4.4. Reversibility

5.4.5. Summary of properties

5.4.6. Merge nets

5.5. Classification

5.5.1. Free choice, State Machine, Marked Graph

5.6. Control

5.6.1. Invariants based supervisory control

5.6.2. Siphons Control

5.7. Generation

5.7.1. Generate from matrix

5.7.2. Structural Analysis

5.7.3. Invariants, Siphons, Traps

5.7.4. Reachability / Coverability Graph

wefrwer uwekrlwerjelkrlkewr wre werlrewkrwe ewl

17

5.7. GENERATION CHAPTER 5. PLUGINS

5.7.5. Traps and siphons

18

Part II.

PeT Developer’s guide

19

6. PeT Architecture

6.1. Required and optional software

Here’s a brief list of programs and libraries required to work on PeT and PeT plugins.

• A Java Developement Kit, we suggest using the latest release available from Sun[6].
Required.

• The PeT sources archive; always be sure to use the latest version. Required.

• Apache Ant[9]. Suggested for plugin developement, required for PeT develope-
ment.

• ROXES Ant Tasks. Required for PeT developement.

• LYX, required if you intend to modify PeT Documentation (i.e., this Guide). Note
that only the Linux version has been tested so far.

• IBM’s Eclipse[2]: suggested for general Java developement.

6.2. The base packages

PeT is organized

6.3. The plugin architecture

How plugins work

6.4. Additional files for distribution

Ant, docs

6.5. Developement ideas

Parts that need work

20

7. A simple plugin example

7.1. Preliminary notes

Interfaces not definitive, notes on threads

7.2. Setting up the environment

Brief notes on setting up Eclipse

7.3. Extending the Plugin Interface

Interface, Loader

7.4. Rendering the Configuration

Render config

7.5. Working on the net

run() method

7.6. Rendering results

Results

7.7. Exporting results

Exporting

7.8. Summing it up

Complete code

21

Bibliography

[1] Petri Net Worlds - http://www.ppp.com

[2] The Eclipse Project - http://www.eclipse.org

[3] Politecnico di Milano - http://www.polimi.it

[4] JARP - http://jarp.sourceforge.net

[5] Simone Rota’s personal site - http://www.varlock.com

[6] Sun’s Java: http://java.sun.com

[7] http://www.informatik.hu-berlin.de/top/pnml/about.html

[8] http://www.w3.org/XML/

[9] http://ant.apache.org

[10] http://www.roxes.com/produkte/rat.html

[11] http://www.lyx.org

22

