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Lecture 1 (2L)

Course introduction and overview
(general concepts on energy systems and their main functionalities)

Some (bare essential) de�nitions

A �rst glance at control problems

Recap, needs and next steps
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Course introduction and overview
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Foreword and rationale

Systems that produce, distribute and use energy are becoming more and
more complex and articulated:

di�erent sources (renewable or not);
di�erent types of generation (e.g., centralised vs. distributed);
complex markets in rapid evolution;
...

Therefore, energy system experience an increasing need for automation

at more and more levels (from the power plant to the town grid, down to the
single house);
more and more integrated (e.g., to coordinate the generation and use of
electricity and heat);
and for new demands (comfort, economy, environmental impact,...).
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Foreword and rationale

Purpose of the course:
address the scenario just sketched

providing the student with a system-level view � typical of the Automation
Engineer � on the encountered control problems, the solutions adopted for them
to date, and the possible future developments
avoiding details on the various types of generators, utilisers and so forth�a
matter to which specialised courses are devoted.

Caveat emptor:

An exhaustive treatise of the matter is absolutely impossible, even at quite
high and abstract a level;
thus we shall proceed by introducing general concepts and then going through
a few case studies.
It will be the duty of you engineers to abstract, generalise and transpose the
lessons learnt wherever the underlying concepts will need putting at work.
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Where is automation in energy systems?
Let us analyse some introductory schemes
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Where is automation in energy systems?
A bit of generalisation

Carrying on with the list:

other generators (solar, wind, geothermal,...);
other �utilisers� (heating elements, fan coils,...);
maybe a home/building automation system, not installed (only) for energy
purpose but surely with a relevant energy e�ect;
...

Scaling up:

�larger� components (building or compound-level HVAC,...);
industrial machines/installations;
power plants;
...
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Where is automation in energy systems?
Let us now start aggregating

NOTE: each part of the system has its own controls and must somehow
coordinate with the others.

Alberto Leva Automation of Energy Systems 8 / 282



Summing up...

Where is automation in energy systems?
Everywhere:

everything transforms energy

although � depending on the main purpose of each object � the verb
�transform� gets specialised for that object as, for example, �generate�,
�transport�, �distribute�, �consume� (in the end, such specialisations are little
more than conventional)

and each object (or aggregate of objects) can be controlled in a view to
achieving local goals (cook some food as quickly as possible; maximise the
economic revenue of a household photovoltaic generator based on forecasts of
weather, energy use and prices of electricity and gas; generate the total power
required at any time by the national network while maintaining each plant as
close as possible to its optimal operating point and without overloading the
transmission lines;...)

bearing however in mind that any action on that individual object will (more
or less) in�uence the overall system.
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Is there any hierarchy in energy ststems?

Rigorously, no. However such a position, albeit formally correct, is extremely
naïve from the engineering point of view

To understand that, let us see what happens if we attempt to write the whole
dynamic model of the �world� energy system (which is plain crazy, beware)
and observe its incidence matrix (a boolean matrix showing which variables
appear in which equations):
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Why is this naïve?

Because only a fool could think of a �Giga-controller� doing the entire job:

even if one could undertake such a design (just think of how measurements
could be collected...)
and admitting (we may be crazy, but up to a point) that each component
comes with �some control already installed�: as a proof of limited craziness,
nobody would dismantle the thermostat of each household fridge ;-)
the problem would be

enormous,
of variable structure (components are installed, turned on and o�, and some
day disposed of),
where objectives are decided at various levels, in a time-varying and often
con�icting manner (we all cook our dinner in the evening while the gas supplier
would like a �at delivery pro�le),
involving physically heterogeneous objects,
designed with �standard� speci�cations and then installed in extremely di�erent
conditions (the same air conditioner model can be used in a dining room in
town, in a mansard in the mountains, in a tropical beach bar,...),
with local controllers (see above) generally designed without having in mind any
communication (let alone cooperation) among them,
...
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Consequences

Therefore, some hierarchy - or better, as we shall see, some structuring of the
problems is in order.

In other words, we need

to understand which are the relevant problems (a task already carried out,
although the matter is continuously evolving, think e.g. of environmental
issues)
and that can reasonably be dominated (which is often not trivial),
�nd for them solution that are sound from an engineering standpoint
and �gure out how to put said solutions at woke also when the boundary
conditions for the problem at hand vary, which can also be due to how the rest
of the system is a�ected by the introduced solutions.
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Consequences

What are we meaning for �a problem can be dominated�?

Essentially that once said problem is stated in system-theoretical terms

having extended its size (i.e., the set of described phenomena) enough for the
�rest of the world� to be properly represented by boundary conditions and/or
disturbances (i.e., exogenous entities)
it is possible to �nd for it a solution of acceptable complexity and
implementable with information available in practice.

An important concept in this regard is that of �dynamic separation�, on which
we shall return in due time.
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Consequences

To state and address problems this way, we need a �systemic� approach, in
which components

can be described at di�erent detail levels,
but preserving their interfaces with other components of the overall system,
and as independently as possible of how they are connected to the rest of the
system;

at the same time, the approach should allow to state problems in such a way
to be tractable with well established control methodologies and techniques
(although the energy context has been fostering new ones).

In addition, simulation techniques play a crucial role.
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A couple of words on history

How has automation in energy systems developed?

Initially (and trivially) to be able to run them: without control systems one
can

neither operate a power plant
nor avoid the electric network collapse
nor maintain the required pressures in a gas network extending for tens of
thousands of kilometers;

then (and by the way almost immediately) for e�ciency reasons concerning
�big� system components (e.g., power plants),

but always having in mind, more or less explicitly, a fairly well-de�ned
structure of the system (in the electric case, for example, a few large
generators, transmission, distribution, and many utilisers of variable size but
small if compared to the generators).
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A couple of words on history

Today, however, the scenario has changed:

there is more and more distributed generation to be integrated with the
network,
di�erent energy sources, both renewable and not, are being considered,
economies of scale are being exploited (think e.g. of district heating),
integration is spreading out among controls (e.g., feedforward compensation
from heat-releasing appliances to room temperature controllers)...
and sometimes among �machines� (e.g., heat recovery, generation surplus
management, and so forth).
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Summing up...

Energy systems provide a number of control problems to address, and several
are �new�.

Many solutions that were acceptable in the past are no longer acceptable
today (e�ciency demands are becoming more stringent).

In the course are we thinking to address everything we have mentioned so far?

Not at all: it would take too long and would not even be a �smart� idea.

Let us therefore review the initial statement about the purpose of the course,
as we can now give it a more precise meaning...
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Summing up...

...by means of another scheme:

(1) and (2) have the same interfaces;

(1�3) must be consistent;

in this course we concentrate on (2�3) and

only sketch out relationships with (1).
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Course organisation
General information

The course consists of

about 30 hours of lectures
and about 20 hours of classroom practice,

for a total of 5 CFU.

Lectures are guided with slides,

while classroom practice involves guidance and individual work.
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Course organisation
Synopsis of lecture and practice subjects

Introduction (this lecture);

review of the mathematical, modelling and control principles that will be used
later on;

the main physical objects (generators, utilisers, distribution networks)
involved in energy systems:

synthetic description and dynamic behaviour in the context where they
operate,
simple models, parametrisable with the minimum necessary information;

the main control problems in energy systems and the strategies to handle
them.

Classroom practice sessions, interlaced with lectures, contain examples and case
studies concerning small applications, and involve the use of open source
simulation and control synthesis tools.
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Instructor information and course site

Alberto Leva
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano
Voice (39) 02 2399 3410
E-mail alberto.leva@polimi.it

O�ce hours:

at the DEIB (2nd �oor, room 234) on Thursday, 13.30 to 15.30,
or by appointment.

Course web page:
http://home.deib.polimi.it/leva/CourseAES
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Teaching material

Course slides (in �eri);

some literature and web references, that will be introduced later on.
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Software

Scilab (open source, Scilab license):
analysis, synthesis and simulation of causal dynamic systems
(block-oriented approach).
Info and download: http://www.scilab.org

OpenModelica (free software, BSD license):
creation and simulation of a-causal dynamic systems
(object-oriented approach).
Info and download: http://www.openmodelica.org

wxMaxima (free software, GPL license):
CAS (Computer Algebra System) for symbolic computations.
Info and download: http://www.wxmaxima.org

Important note:
the goal of this course is not to teach (let alone compare) approaches to
modeling and simulation, nor is it to train students for the use of one or
another software; the mentioned applications are here only �service tools� to
put the concepts learnt to work.
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Exam

The students will be required to carry out a project by using the presented
methodologies and tools, and to deliver a short written report following a
template that will be provided during the course together with the project
themes.

This will contribute about 40% of the total score, the rest coming from a
written test (about 1.5 hours) examples of which will be shown later on.

For apparent reasons, to pass the exam the written test must reach a
su�cient score.

There are regular exam sessions in the periods established by the School.
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Some (bare essential) de�nitions
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Energy sources classi�cation

Primary � Secondary Energy (PE�SE)

Primary energy is that gathered directly in nature:
coal, oil, natural gas, biomass, radioactive substances, geothermal energy, wind, sun radiation,

gravitational potential energy (e.g. for hydroelectric generation),...

Secondary energy is obtained by transforming primary energy in a form easier
to use/store/transmit:
electricity, fossil fuels, hydrogen, steam...

Renewable � Non Renewable Energy Sources (RES�NRES)

Renewable energy is obtained from (practically) inexhaustible sources (and
without pollutant release):
sun, wind, tides, geothermal heat,...

Non renewable energy implies consuming some �fuel� (and releasing some
pollutant):
fossil fuels,...

⇒ Extracting, transforming and transmitting energy are industrial processes
where automation is required.
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Energy intensity, conservation, e�ciency

Energy intensity
Amount of energy per unit of intended (i.e., useful) result.

EI of a country: energy consumption per GDP unit;
EI of a product: (average) energy consumption per product unit;
EI of a service: (average) energy consumption per served request;
...

Energy conservation
Reducing the (growth of) energy consumption in absolute physical terms.

Energy e�ciency
Reducing the EI of a product/service/whatever while preserving the intended
result (e.g., less energy for HVAC with the same comfort).

⇒ Conservation and e�ciency are separate but intertwined concepts, and
automation (to say nothing of process/control co-design) is useful to pursue
them.
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A �rst glance at control problems
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Some control problems � fundamental

Generator control (PE→SE)

Minimise fuel consumption (NRES) � maximise caption (RES),
that is, stay in the vicinity of �optimal� operating points.

Utiliser control (SE→�nal use)

Maintain functional quality (room temperatures, correct appliance
operation,...).

Transmission control (one type of SE)

Maintain generation�demand balance;
Manage storages if applicable;
Maintain network operation quality (voltage and frequency, gas pressures,...);
Minimise network losses;
Avoid network overloading.
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Some control problems � advanced

Generator energy mix control (NRES)

Mix PEs (e.g., oil and gas)
to ful�l SE demands (e.g., electricity and steam)
optimising for cost, pollutant emission, or any combination thereof.

Utiliser energy mix control

Mix available SEs (e.g., electricity, gas and solar heat stored as hot water)
to ful�l �nal use needs (e.g., electric and thermal loads of a house)
optimising for any Key Performance Indicator (KPI) related to the utiliser
process.

Zone- (or neighbourhood-)level energy mix control

Given a zone with various generators (both RES and NRES) and utilisers,
�nd the optimal management of each generator and utiliser
and also of storages where applicable
optimising for...? De�ning zone-level KPIs is an open problem and often
involves con�icts among stakeholders' interests (e.g., we all cook dinner in the
evening but gas suppliers like �at demand pro�les).
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Control problems � main common characteristics

Set point tracking and/or functional minimisation;

set point pro�les generation;

scheduling (of generation, utilisation,...);

disturbance rejection;

uncertainty (e.g., demand forecast errors, time-varying costs,...);

hard constraints (e.g., generator operational limits,...);

soft constraints (e.g., regulations/agreements on acceptable transient
overloads, reserve management,...);

robustness versus plant�model mismatches (e.g., line impedance variations
owing to weather conditions,...);

fault tolerance (e.g., in the case of generator breakdowns).
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Control problems � major techniques

Classical continuous-time control (single- and multi-variable);

optimal, robust and predictive control (single- and multi-variable);

control of variable-structure and/or switching systems;

dynamic optimisation (often for large-scale systems);

classical discrete-event control;

supervisory control.
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Recap, needs and next steps
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Recap

Automation in energy system means controlling generation, transmission,
storage and utilisation...

...in a coordinated manner

and for multiple objectives at di�erent system levels.

Control problems call for a coordinated use of various techniques

and solutions need implementing in heterogeneous architectures.

Process/control co-design is helpful wherever applicable

but refurbishing of already designed systems is of paramount relevance.

Alberto Leva Automation of Energy Systems 34 / 282



Needs

A modelling framework;

quantitative performance indicators (automation-oriented KPIs);

a problem taxonomy;

best practices and control design guidelines based on the above,

and corresponding validation/assessment methodologies;

awareness of implementation-related facts.
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Next steps

Review modelling principles;

de�ne a modelling framework suitably managing components' behaviours and
interfaces in both the object-oriented (OO) and the block-oriented (BO)
context, conceptually relating the two;

devise the required component models (of course we shall not exhaust this
matter) and the major KPIs;

learn to create system-level compound models tailored to handling problems
that involve those KPIs.
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Lecture 2 (2L)

Modelling principles
(balance equations and their relevance for the course)

Homework

Alberto Leva Automation of Energy Systems 37 / 282



Modelling principles
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Foreword (1/2)

Control problems are classically divided in �process� and �motion� ones.

In this course, the �rst type dominates.

Furthermore, Partial Di�erential Equation (PDE) systems are seldom
encountered, and never with more than one spatial coordinate. This is the
case of distributed-parameter systems (e.g., tubes).

In such cases, we shall obtain Ordinary Di�erential Equation (ODE) systems
by managing spatial discretisation via the Finite Volumes (FV) approach.
This will provide corresponding concentrated-parameter systems.

We shall encounter physical phenomena of basically three types, namely
hydraulic, thermal, and electrical.

Mechanical phenomena will appear, but sporadically and in one coordinate
(when dealing with rotating masses).

However, most problems are multi-physics (i.e., comprise more than one type
of phenomena).
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Foreword (2/2)

We therefore need

mass, energy and momentum equations for thermo-hydraulic networks (for
space reasons we only treat incompressible �uids with a single species);
energy equations for solid bodies such as walls (air in buildings is treated the
same way via some simpli�cations that will be introduced in due course
together with their validity limits);
(semi)empirical equations for heat transfer;
equations for electric networks (phasor-based, reduced to a single phase since
this simpli�cation does not hinder the explanation of the required concepts);
energy equations for rotating masses (e.g., in alternator-based electric
generators);

Of course we deal with dynamic balance equations.
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Thermo-hydraulic networks
Mass equation

The equation is written with reference to a control volume.

Let M be the (incompressible, single species �uid) mass contained in the
volume.

Let wi , i = 1 . . . nm, be the nm mass �owrates exchanged by that volume
with the external environment, considered positive if entering the volume.

The equation then simply reads

dM(t)

dt
=

nm∑
i=1

wi (t)

where t is obviously the (continuous) time.
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Thermo-hydraulic networks
Energy equation

Also this equation is written with reference to a control volume.

Consider a �uid volume containing a total energy E and where nm mass
�owrates wi and nh heat rates Qj enter (or exit if negative).

Clearly, the time derivative of E è is the sum of the heat rates (or thermal
powers) Qj , not associated to any mass transfer, and of the energy
contribution yielded by the mass �owrates.

The latter contributions are of two coexisting types:
(signed) heat transfers inherent to mass transfers, taking the form

mass �owrate× e�uid speci�c energy ([kg/s]× [J/kg ] = [J/s] = [W ])

and work exerted by the entering �uid on that contained in the volume or vice
versa, that in di�erential and speci�c form is expressed as

dL = d(pv) = d(p/ρ)

where v is the speci�c volume and ρ the density. Note that dL = pdv + vdp,
where pdv is �compressing work� and vdp �impelling work� (both of course
signed).
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Thermo-hydraulic networks
Energy equation

Thus, the thermodynamic variable characterising the energy contribution of
an entering (or exiting) mass �owrate to a volume, is the �uid speci�c
enthalpy, expressed as

h = e +
p

ρ

where e is the speci�c internal energy.

The energy equation then takes the form

dE (t)

dt
=

nm∑
i=1

wi (t)hi (t) +

nh∑
j=1

Qj(t).

For incompressible �uids, at pressures and temperatures of interest for this
course, the thermal contribution e invariantly dominates the work
contribution p/ρ; hence, in these conditions one can consider both the
speci�c enthalpy and the speci�c internal energy to equal cT , where c is the
�uid speci�c heat (assumed here constant) and T its temperature.
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Thermo-hydraulic networks
Energy equation

Furthermore here we only deal with single-species �uids, thereby having
always to do with a single speci�c heat c.

Given all the above, for our purposes the energy equation for �uids is

c
dM(t)T (t)

dt
= c

nm∑
i=1

wi (t)Ti (t) +

nh∑
j=1

Qj(t).

where T is the control volume temperature, assumed uniform in accordance
with the adopted concentrated-parameter approach, and M the �uid mass.
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Thermo-hydraulic networks
Energy equation

Sometimes the mass is constant, like in a tube section always �lled with �uid,
and thus

cM
dT (t)

dt
= c

nm∑
i=1

wi (t)Ti (t) +

nh∑
j=1

Qj(t).

In other cases, such as tanks, this is not true. It is then convenient to expand
the derivative on the left hand side, and subtract the mass equation
multiplied by cT . This provides

cM(t) dT (t)
dt

+ cT (t) dM(t)
dt

= c
nm∑
i=1

wi (t)Ti (t) +
nh∑
j=1

Qj (t)

− cT (t) dM(t)
dt

= − cT (t)
nm∑
i=1

wi (t)

cM(t) dT (t)
dt

= c
nm∑
i=1

wi (t)(Ti (t)− T (t)) +
nh∑
j=1

Qj (t)

that is sometimes called the �net energy� equation.
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Thermo-hydraulic networks
Momentum equation

This equation is used primarily for modelling tubes (valves are a somehow
analogous case treated later on).

Consider a tube (element) and write that the time derivative of the �uid
momentum is the sum of the forces acting on it, that is,

pressure forces at the two ends,
gravity force,
and friction force on the lateral surface,

all projected onto the tube abscissa x

In fact, other components do not act on the �uid motion on the prevailing
dimension x and merely result in constraint reaction forces, not relevant for
the energy-related aspects on which we want to focus.
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Thermo-hydraulic networks
Momentum equation

To keep complexity at a level compatible with the course, consider a tube
with uniform section A (and recall that we only deal with incompressible
�uids).

This yields

M
du(t)

dt
= Api (t)− Apo(t) + Mg sin(α)− fa(t).

Note that sin(α) = ∆z/∆x , ∆z being the
initial altitude minus the �nal one

while the friction force fa, always
contrasting motion, is

fa = Kf A`ρu|u|

where A` is the lateral surface.
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Thermo-hydraulic networks
Momentum equation

The quantity Kf is called friction coe�cient, depends on the �uid/wall
contact characteristics, and is tabulated for most cases of interest based on
experiments and empirical correlations.

The equation obviously contains an inertia term, that in our models can
however be omitted.

This is possible because hydraulic phenomena are much faster than thermal
ones, which are our main subject.

In other words, since thermal variables (such as temperatures) propagate at
the �uid speed, while hydraulic ones (such as pressures and �owrates)
propagate at the speed of sound in the �uid, we can safely assume that for
our purposes �hydraulics is always at steady state�.

Thus, we can write the momentum equation as the algebraic one

A (pi (t)− po(t)) + Mg
∆z

∆x
− Kf A`ρu(t)|u(t)| = 0.
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Thermo-hydraulic networks
Momentum equation

Summing up, denoting
by A the tube (uniform) section,
by L its length,
and by ω its internal perimeter,

simplifying the notation a bit and recalling that w = ρAu, we have

A(pi − po) + ρALg
∆z

L
− Kf ωLρu|u| = 0

pi − po = Kf
ωL

ρA3
w |w | − ρg∆z .

In addition, if the tube is installed in such a way that w has always the same
sign, taken positive when going from the higher- to the lower-pressure end,
we can write

pi − po = Kf
ωL

ρA3
w2 − ρg∆z ,

that we shall often further summarise as

pi − po =
KT

ρ
w2 − ρg∆z .
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Thermo-hydraulic networks
Momentum equation

The momentum equation can also represent the typical valve behaviour.

This means neglecting more than one phenomenon, that however is of
interest only for sizing, or operating conditions not advised for �good� plant
management�i.e., not of interest here.

From our point of view, consider a valve like a variable-section short tube
installed so that the �ow does not reverse. Thus, take

pi − po =
KT

ρ
w2 − ρg∆z ,

set ∆z = 0 (short component, hardly any gravity e�ect) and rewrite as

w = CvΦ(x)
√
ρ(pi − po)

where Cv is the �ow coe�cient, x ∈ [0, 1] the command, and
Φ(x), Φ(0) = 0,Φ(1) = 1 the opening or intrinsic characteristic.
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Solid bodies
Energy equation

In this case we naturally neglect any volume e�ect, and consider the speci�c
heat spatially uniform (non-homogeneous walls will be treated with at least
one equation per material layer).

Since there is no mass transfer, the equation simply reads

cM
dT (t)

dt
=

nh∑
j=1

Qj(t).

where symbols have the same meaning as in the �uid case, and M is of
course constant.

Alberto Leva Automation of Energy Systems 51 / 282



Heat transfer equations
Foreword

These are algebraic equations, as they describe no storage.

We need to model

conduction within solids (and sometimes �uids),
convections between a solid and a �uid,
and radiation.

In all cases we shall adopt simpli�ed concentrated-parameter descriptions
right from the beginning.
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Heat transfer equations
Conduction

We shall only use a simpli�ed planar descriptions, as more detailed ones
would stray from our scope.

The heat rate from the a to the b side of a solid layer is

Qab = G (Ta(t)− Tb(t))

where Ta and Tb are the side temperatures.

The thermal conductance G is

G = λ
A

s

where λ is the material's thermal conductivity, A the layer surface, and s its
thickness.
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Heat transfer equations
Convection

The convective heat rate from a solid wall (subscript w) to a �uid (subscript
f ) is

Qwf = γA(Tw (t)− Tf (t))

where Tw and Tf are the wall and a �uid �bulk� temperature, while A is the
contact surface.

The thermal exchange coe�cient γ can be considered constant (as we shall
almost always do) or made dependent on the �uid and motion conditions,
typically with relationships involving the Reynolds (for forced convection) or
Grashof (for natural one), Nusselt and Prandtl numbers.
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Heat transfer equations
Convection

A common, somehow intermediate re�nement is to have γ just depend on
the �uid velocity tangent to the wall.

To this end, taking a reference heat exchange coe�cient value γ0 as
corresponding to a reference velocity u0, a widely used relationship is

γ(t) = γ0

(
u(t)

u0

)0.8

where u(t) is the �uid velocity.
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Heat transfer equations
Radiation

At a simpli�ed level, the radiative heat transfer from a body a to a body b
depends on the di�erence of their absolute (Kelvin) temperatures to the
fourth power, i.e.,

Qab = K
(
T 4
a − T 4

b

)
.

The radiative heat transfer coe�cient K depends on several things, including
the bodies' emissivity and their view factors.

However in this course the only relevant case will be that of solar radiation,
that can be very naturally viewed as a prescribed power �ux [W /m2].
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Electric networks
Foreword

In this course we shall deal essentially with AC power networks.

The matter is vast, and simpli�cations are introduced so as to transmit the
necessary concept with the minimum complexity su�cient to explain them.

In detail (and somehow anticipating) we shall assume

a single-frequency synchronous network (quite reasonable if frequency is well
controlled, and we do not have the time to deal with the connected �stability�
problems),
all generators described by a constant voltage behind their internal reactance,
linear behaviour of transmission lines,
no transformers (we only spend some words on reactive power control) as
doing so signi�cantly reduces computations,
a one-phase (or equivalently, a balanced multiphase) system.

We shall thus adopt a phasor-based modelling approach.
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Electric networks
Phasors

Any quantity varying (co)sinusoidally with constant frequency ω can be
represented as

A cos(ωt + θ) = <
(
Ae j(ωt+θ)

)
= <

(
Ae jθ e jωt

)
where j is the imaginary unit, e jωt yields time dependence, and the phasor
Ae jθ magnitude and phase with respect to a convenient reference.

This allows for a phasor arithmetic to handle AC networks with frequency
�hidden�...

...in the term e jωt and in the value of frequency-dependent impedances.

Recall (for the last time) that phasor analysis is for synchronous networks
with constant frequency (whence its sometimes encountered alternative name
of �static analysis�).
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Electric networks
Basic equations (essentially to agree notation...)

Ohm's law V = ZI or I = YV , where V , I are voltage and current (phasors)
and Z ,Y the complex impedance and admittance, respectively (underline
indicates complex numbers). We shall typically express Z as R + jX
R,X ≥ 0, and Y as G − jB (G ≥ 0, and mind the minus to have B ≥ 0),
where R,X ,G ,B are respectively called resistance [Ω], reactance [Ω],
conductance [S ], and susceptance [S ].

Kircho�'s laws (nothing to say here).

Power (∗ denotes the complex conjugate):
complex S = V RMS I

∗
RMS = P + jQ = Ae jφ

apparent A = |S | = VRMS IRMS = Vmax Imax/2 [VA],
active P = <(S) = VRMS IRMS cosφ [W ],
reactive Q = =(S) = VRMS IRMS sinφ [VAR],

cosφ power factor.

Recall that for any sinusoidal signal F , FRMS = Fmax/
√
2.
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Energy equations for rotating masses

Many electric generators contain rotating masses, like turbine and alternator
rotors.

Their angular velocity a�ects the generated frequency (to be controlled).

The energy equation states that the time derivative of the kinetic energy
equals the algebraic sum of powers, i.e.,

d

dt

(
1

2
Jω2

r

)
= Pm − Pe

where J is the inertia, ωr the angular velocity, Pm the mechanical power
applied to the shaft (positive if entering the considered machine) and Pe the
active electric power (positive if generated).
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Homework
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Homework 01
Our �rst multi-physics model

Crude simpli�cation of an electrically heated room:

Data:

room dimensions 4m × 4m × 3m height;
only one side wall (30cm thick) exchanges heat, the others are adiabatic;
no openings, external temperature 5 ◦C ;
no heater losses (all of its power is released to air);
air density 1.1 kg/m3, speci�c heat 1020 J/kg◦C ;
wall density 2000 kg/m3, speci�c heat 800 J/kg◦C ;
air�wall heat exchange coe�cient 10W /m2◦C ;
wall�exterior heat exchange coe�cient 4W /m2◦C ;
AC supply voltage 220V RMS , f = 50Hz , R = 50Ω, L = 10mH.
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Homework 01
Assignments
(expected workload: 1.5�2 hours)

Advice: �rst operate with symbols, then put in numbers.

Assignment 1

Write a dynamic model (M1) of the system using energy balances and
electrical fundamental equations (i.e., no phasors);
count equations and variables, make sure that M1 is closed.

Assignment 2

Write a dynamic model (M2) of the system using energy balances and phasors;
count equations and variables, make sure that M2 is closed;
analyse M1 and M2: can they be decomposed in cascaded submodels? Why?

Assignment 3

Write the transfer function from PRa to Ta (linearise if needed);
put in numbers and �gure out the time scale of thermal phenomena;
compare with the time scale of electrical phenomena: what do you conclude?
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Lecture 3 (2P)

Previous homework solution

Further considerations on modelling principles

Brief introduction to (wx)Maxima and the Modelica language

Homework
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Previous homework solution
(wxMaxima-in-a-nutshell embedded)
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Homework 01 - solution

Model M1 (Masses and thermal conductances are obtained from densities, speci�c

heats and dimensions):

VG (t) = VGRMS

√
2 sin(2πft) Source generator

VR (t) = RI (t) Heater resistor
VL(t) = LdI (t)/dt Line inductor
VR (t) + VL(t) = VG (t) KVL
P(t) = VR (t)I (t) Active power
Q(t) = VL(t)I (t) Reactive power (addendum)
PRa(t) = P(t) All active power into air
MacadTa(t)/dt = PRa(t)− Paw (t) Air energy balance
Mw cwdTw (t)/dt = Paw (t)− Pwe(t) Wall energy balance
Paw (t) = GawAw (Ta(t)− Tw (t)) Air�wall heat transfer
Pwe(t) = GweAw (Tw (t)− Te(t)) Wall�exterior heat transfer
Te(t) = Exogenous temperature

Note the partition

into electric and thermal equations; each has its own boundary conditions , and

one such condition is presented by the former to the latter.
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Homework 01 - solution

Equations/variables balance for M1

The model has overall 12 equations, 3 of which are di�erential,
its variables (states in red) are
VG , VL, VR , I , P, Q, PRa, Paw , Pwe , Te , Ta, Tw ,
thus a set of 12, 3 of which are states,
and there is no algebraic constraint among the states.

⇒ M1 is a correctly closed ODE model.

Possible cascade partition for M1

Electric equations in�uence thermal ones via PRa = P

while the reverse does not hold true, as no state electric equation
contains any thermal variable.

⇒ M1 can be viewed as the cascade of

an electric subsystem M1e, which is nonlinear owing to P = VR I ,
with output PRa and for which we could consider VG as an input,
and a thermal one M1t with input PRa and output e.g. Ta,
which conversely is linear.
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Homework 01 - solution

Model M2: �rst let us compute P with Maxima by issuing the commands

IRMS : VGRMS/(R+%i*w*L);
S : VGRMS*conjugate(IRMS);
P : realpart(S);

where obviously ω = 2πf .

This yields

P =
RV 2

GRMS

R2 + (ωL)2
,

and therefore M2 is
P(t) = RV 2

GRMS/(R
2 + (ωL)2) Active power

MacaṪa(t) = PRa(t)− Paw (t) Air energy balance

Mw cw Ṫw (t) = Paw (t)− Pwe(t) Wall energy balance
PRa(t) = P(t) All active power into air
Paw (t) = GawAw (Ta(t)− Tw (t)) Air�wall heat transfer
Pwe(t) = GweAw (Tw (t)− Te(t)) Wall�exterior heat transfer
Te(t) Exogenous temperature

Note: from now on we shall often use a dot to indicate time derivatives.
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Homework 01 - solution

Equations/variables balance for M2

The model has overall 7 equations, 2 of which are di�erential,
its variables (states in red) are
P, PRa, Paw , Pwe , Te , Ta, Tw ,
thus a set of 7, 2 of which are states,
and there is no algebraic constraint among the states.

⇒ also M2 is a correctly closed ODE model.

Possible cascade partition for M2

Electric equations were reduced to a boundary condition on P.
⇒ M2 can be viewed as a thermal model M2t only,

with no input and output Ta.
We might as well consider M2t to have PRa as input,
and in this case the PRa → Ta dynamic relationship is linear.
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Homework 01 - solution
A small interlude

Let us take some minutes to learn about some of the Maxima commands
that we shall use most frequently, i.e.,

matrix, invert, ident, . and *,
ratsimp, expand,
rhs, coeff,
and solve.
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Homework 01 - solution
Back to the main topic

Compute the transfer function from PRa to Ta:

Paw : Gaw*(Ta-Tw);
Pwe : Gwe*(Tw-Te);
se1 : Ma*ca*Tadot = PRa-Paw;
se2 : Mw*cw*Twdot = Paw-Pwe;
solxdot : ratsimp(solve([se1,se2],[Tadot,Twdot]));
solTadot : expand(rhs(solxdot[1][1]));
solTwdot : expand(rhs(solxdot[1][2]));
A : ratsimp(matrix([coeff(solTadot,Ta),coeff(solTadot,Tw)],

[coeff(solTwdot,Ta),coeff(solTwdot,Tw)]));
B : ratsimp(matrix([coeff(solTadot,PRa),coeff(solTadot,Te)],

[coeff(solTwdot,PRa),coeff(solTwdot,Te)]));
Tmat : ratsimp(invert(s*ident(2)-A).B);
PRa2Ta : Tmat[1,1];

Result:

G(s) :=
Ta(s)

PRa(s)
=

cwMw s + Gwe + Gaw

cacwMaMw s2 + (cwGawMw + ca(Gwe + Gaw )Ma)s + GawGwe
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Homework 01 - solution

Put numbers in and plot the Bode magnitude diagram (some more Maxima
commands...):

load("bode");
Gnum(s) := ev(subst([Ma=4*4*3*1.1,ca=1020,Gaw=4*3*10,

Mw=4*3*0.3*2000,cw=800,Gwe=4*3*4],PRa2Ta));
bode_gain(Gnum(s),[w,1e-7,1e-1]);

Result:
Two time scales:

one (�fast�) relative to the energy
storage in the air � order of
magnitude, 1000 s,

the other (�slow�) relative to wall
storage � order of magnitude,
some 105 s, i.e., some days.

Hence, electric phenomena (time scale dominated by L/R = 0.2ms) are
about 105 times faster than the faster thermal ones, which are in turn about
104 times faster than the slower thermal ones.
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Modelica in a nutshell
(more on the matter later on)
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Modelica
Minimum introduction

A �hello world� model (der is the time derivative operator):
model HelloWorld

parameter Real a = -0.2;
parameter Real b = 1;
parameter Real c = 1;
Real x(start=0),u,y;

equation
der(x) = a*x+b*u;
5*y-c*x = 0;
u = if time<1 then 0 else 1;

end HelloWorld;

A couple of OMNotebook commands:
simulate(HelloWorld,stopTime=20)
plot({u,x,y})

Let us see the result.
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Back to homework 01
Modelica realisation of M1 and M2

model M1

parameter Real w=6.28*50;

parameter Real R=50;

parameter Real L=0.01;

parameter Real VGRMS=220;

Real VG,VL,VR;

Real I(start=0),P,Q;

parameter Real Ma=4*4*3*1.1;

parameter Real ca=1020;

parameter Real Gaw=4*3*10;

parameter Real Mw=4*3*0.3*2000;

parameter Real cw=800;

parameter Real Gwe=4*3*4;

Real PRa,Paw,Pwe,Te;

Real Ta(start=10);

Real Tw(start=10);

equation

VG = VGRMS*sqrt(2)*sin(w*time);

VG = VL+VR;

VR = R*I;

VL = L*der(I);

P = VR*I;

Q = VL*I;

Ma*ca*der(Ta) = PRa-Paw;

Mw*cw*der(Tw) = Paw-Pwe;

PRa = P;

Paw = Gaw*(Ta-Tw);

Pwe = Gwe*(Tw-Te);

Te = 5;

end M1;

model M2

parameter Real w=6.28*50;

parameter Real R=50;

parameter Real L=0.01;

parameter Real VGRMS=220;

parameter Real Ma=4*4*3*1.1;

parameter Real ca=1020;

parameter Real Gaw=4*3*10;

parameter Real Mw=4*3*0.3*2000;

parameter Real cw=800;

parameter Real Gwe=4*3*4;

Real P,PRa,Paw,Pwe,Te;

Real Ta(start=10);

Real Tw(start=10);

equation

P = R*VGRMS^2/(R^2+w^2*L^2);

Ma*ca*der(Ta) = PRa-Paw;

Mw*cw*der(Tw) = Paw-Pwe;

PRa = P;

Paw = Gaw*(Ta-Tw);

Pwe = Gwe*(Tw-Te);

Te = 5;

end M2;
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Homework 02
Assignments
(expected workload: 0.5 hours for assignments 1 to 3, less predictable for assignment 4)

Assignment 1

Create an OMNotebook �le with M1 and M2 (copy & paste from slides).

Assignment 2

Simulate M1 and M2 for 10 s and verify that the temperature outcomes are
consistent;
Have a look at the simulation times: what can you observe?

Assignment 3

Suppose that your focus is on the heater behaviour or on the temperature
control problem: which model would you prefer for which task? Why?

Assignment 4

Install wxMaxima and OpenModelica (we shall use the OpenModelica
Notebook) and familiarise with them.

From now on, when we have classroom practice bring your laptop.
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Lecture 4 (2L)

Previous homework solution

Model structuring
(�rst-principle models, block- and object-oriented)

The concept of �electric equivalent� in a view to modularisation

Homework
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Previous homework solution
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Homework 02 - solution

Let us perform the required simulations and look at the results.

Considerations:

M1 and M2 produce the same temperatures
but M1, that also describes fast electric phenomena, is much more
computation-intensive;
thus suited for studying the heater but not temperature control, while for M2
the reverse is true.

In other words,

in M1 the heater is described as it ought to be for a component-level study
while in M2 the same component is modelled in a way suitable for system-level
studies.

Consequence:

in large-scale, multi physics, multi-level systems like energy ones are
we shall quite often need to model the same component (think of this
homework's heater) at di�erent detail levels
while preserving interchangeability of models for the same component.

Having this in mind, let us proceed.
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Model structuring
(�rst-principle models, block- and object-oriented)
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Block-oriented and object-oriented (BO/OO) models
Foreword

We stick to 1st-principle models (based on dynamic balances) as we often
need to analyse/simulate/optimise something that does not yet exist (thus,
no data to identify e.g. black- or grey-box models).

Note: this does not mean that identi�cation and estimation never come into
play (think e.g. of adaptive control), rather just that the matter does not �t
in this course (except for a few words later on).

We need however to distinguish between block- and object-oriented models.
Block-oriented models

are oriented or causal, thus written having their boundary conditions in mind,
and connect to one another via inputs and outputs.

Object-oriented models

are a-causal, thus written independently of their boundary conditions,
and connect to one another via ports.

Let us go through an introductory example, and then generalise.
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BO (causal) and OO (a-causal) models
Introductory example

We need to model a resistor ⇒ Ohm's law.

We consider two cases:
1 the resistor is connected to a �xed voltage generator E , leading with obvious

notation to the model
V = E Voltage generator (boundary condition for the resistor)
I = V /R Resistor

2 the resistor is connected to a �xed current generator A, leading this time to
I = A Current generator (boundary condition for the resistor)
V = RI Resistor

Same component, di�erent boundary conditions, di�erent models,

both of course oriented: in the former case for the resistor V is an input and
I an output, in the latter vice versa; the two BO resistor models are here
respectively

with input and output connectors.
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BO (causal) and OO (a-causal) models
Introductory example

Now we take a di�erent approach:

we identify ports, i.e., physical terminals characterising the interface exposed
by the modelled component to the outside, in this case the resistor's two pins
(a and b to name them) each of which carries a voltage V and a current I ,
and we write the component's constitutive equations, that with obvious
notation read

RES :

{
a.I + b.I = 0

a.V − b.V = R a.I

where current is taken positive if entering the pin.
We can also write the constitutive equations for the voltage and the current
generators, obtaining (mind the current sign convention)

VGEN :

{
a.I + b.I = 0

a.V − b.V = E
CGEN :

{
a.I + b.I = 0

a.I = −A .

.
We can �nally introduce a ground (with a single pin a), i.e.,

GND : a.V = 0.
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BO (causal) and OO (a-causal) models
Introductory example

Doing so, the two addressed cases only di�er for the generator equations:

Constitutive equations

RES.a.I + RES.b.I = 0 Res
RES.a.V − RES.b.V = RES.R RES.a.I

GEN.a.I + GEN.b.I = 0 V GEN.a.I + GEN.b.I = 0 C
GEN.a.V − GEN.b.V = GEN.E gen GEN.a.I = −GEN.A gen

GND.a.V = 0 Gnd

Connection equations

GEN.a.V = RES.a.V pins GEN.a
GEN.a.I + RES.a.I = 0 and RES.a

GEN.b.V = GND.a.V pins GEN.b,
RES.b.V = GND.a.V RES.b and

GEN.b.I + RES.b.I + GND.a.I = 0 GND.a

That is, component models are written independently of their connection, they
are neither oriented nor closed, communicate via ports, and the overall model is
closed (thereby determining orientation) by joining the (component-speci�c)
constitutive equations and the (port-speci�c) connection equations.
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BO (causal) and OO (a-causal) models
Introductory example

Ports carry variables, that can be

e�ort variables (de�ned as di�erence with respect to a reference, think of
voltage or temperature), or
�ow variables (de�ned as �owing through a boundary, think of current or
power).

Connecting N (two or more) ports generates

N − 1 equations per e�ort variable, stating that it is equal on all connected
ports, and
one equation per �ow variable, stating that its sum over all connected ports is
zero.

Note; all the above has a direct counterpart in OO modelling languages such
as Modelica (more on this in due course).
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BO and OO models
Distinctive features

Both types of models allow to encapsulate the model's behaviour with
respect to its interface, allowing e.g. for scalable detail.

BO models require the system to be oriented ⇒ suitable for control
components (block diagram elements) and complete controlled systems'
models, i.e., for �plants completely built, with control signals and controlled
variables already speci�ed as inputs and outputs.

OO models do not require the system to be oriented ⇒ suitable for individual
plant components.

Quite intuitively, we shall use a combination of the two model types.

Let us exemplify the concepts above, using the Modelica syntax.
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BO and OO models
Example on behaviour encapsulation and scalable complexity

Preliminary de�nitions: input and output connectors for real signals,
electric pin, thermal port.

connector signalIn
input Real s; // Oriented (causal) connection, input

end signalIn;
connector signalOut

output Real s; // Oriented (causal) connection, output
end signalOut;
connector pin

Real v; // Voltage (effort variable)
flow Real i; // Current (flow variable)

end pin;
connector thermalPort

Real T; // Temperature (effort variable)
flow Real Q; // Power (flow variable)

end thermalPort;

Note: the Modelica Standard Library (MSL) already contains most of what we are

writing, plus physical types such as �Voltage�, �Current�, �Speci�cHeatCapacity�,

and so forth: for now we code from scratch to learn the principles and just use

�Real� to save time.
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BO and OO models
Example on behaviour encapsulation and scalable complexity

PI controller: linear model
model PI_linear

signalIn SP,PV; // Set Point and Process Variable
signalOut CS; // Control Signal
parameter Real K = 1; // Gain
parameter Real Ti = 10; // Integral time
Real up,ui(start=0);

equation
up = K*(SP.s-PV.s); // P control
der(ui) = K/Ti*(SP.s-PV.s); // I control
CS.s = up+ui;

end PI_linear;
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BO and OO models
Example on behaviour encapsulation and scalable complexity

PI controller: model including saturations and antiwindup

model PI_antiwindup
signalIn SP,PV; // Set Point and Process Variable
signalOut CS; // Control Signal
parameter Real K = 1; // Gain
parameter Real Ti = 10; // Integral time
parameter Real CSmin = 0; // Minimum CS
parameter Real CSmax = 1; // Maximum CS
Real x(start=0);

equation
CS.s = max(CSmin,min(CSmax,x+K*(SP.s-PV.s)));
x+Ti*der(x) = CS.s;

end PI_antiwindup;

Same interface, di�erent behaviours.
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BO and OO models
Example on behaviour encapsulation and scalable complexity

Capacitor: ideal model
model Capacitor_ideal

pin a,b;
parameter Real C = 1e-6; // Capacitance
parameter Real Vstart = 0; // Initial voltage
Real V(start=Vstart);

equation
a.i + b.i = 0;
a.v - b.v = V;
a.i = C*der(V);

end Capacitor_ideal;
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BO and OO models
Example on behaviour encapsulation and scalable complexity

Capacitor: model with loss
model Capacitor_lossy

pin a,b;
parameter Real C = 1e-6; // Capacitance
parameter Real Gloss = 1e-9; // Loss conductance
parameter Real Vstart = 0; // Initial voltage
Real V(start=Vstart);

equation
a.i + b.i = 0;
a.v - b.v = V;
a.i = C*der(V)+Gloss*V;

end Capacitor_lossy;

Again, same interface and behaviours of di�erent complexity.
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The concept of �electric equivalent�
in a view to modularisation
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Electric equivalents

In OO models, ports are naturally associated with energy transfer.

To understand, consider the typical port with one e�ort and one �ow variable:

most such couples are keen to be related to such a transfer. Examples are

electric, obviously (voltage v , current i) ⇒ vi = power;
mechanic, translational (position x , force f ) ⇒ ẋ f = power, note the
derivative;
mechanic, translational (angle ϕ, torque τ) ⇒ ϕ̇τ = power, note again the
derivative;
thermal, conductive and convective (temperature T , power Q): note that here
power is not the product of the two.

This allows to create electric equivalent models, particularly when the �ow
variable is linearly related to a di�erence of the e�ort one.
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Electric equivalents

Electric equivalents are thus suited to describe energy-related phenomena
when

energy storage is related to an e�ort variable, as in E = CT where C is a
thermal capacity, and
energy transfer is linearly related to di�erences of that variable, as in
Q = G∆T where G is a thermal conductance.

They are not (so) suited, therefore, when this is not (so) true, for example

for (incompressible) hydraulics, as the mass �owrate is most often related to
the square root of a pressure di�erence, unless dealing with linearised models,
or
when energy transfer occurs via mass transfer, as in that case the direction of
said transfer depends on the sign of some �owrate, i.e., model causality is
dictated by the sign of some variables.

Nonetheless they are a powerful tool, which we shall sometimes employ.
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Homework
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Homework 03
Assignments
(expected workload: 0.5 hours)

Assignment 1

Create an electric equivalent model for the thermal part of the system used for
homework 01, shown above for convenience.

Assignment 2

Classify components into �source� or �boundary condition�, �storage�, and
�'�ow� or �transfer� ones, motivating your statements.
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Lecture 5 (2L)

Previous homework solution

Models and control problems

Models of electric components for power and frequency control: generators
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Previous homework solution
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Homework 03 - solution

Required model:

where Ca = Maca, Cw = Mwcw .

Component classi�cation:

Current generator heater boundary condition
Voltage generator exterior boundary condition
Conductors air�wall and wall�exterior convection �ow
Capacitors air and wall storage

Note: we prefer �boundary condition� to �source� (or �sink�) because the
latter term(s) also refer to the sign of some �ow variable, which is not
relevant to model structuring.
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Models and control problems
(electric networks)
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Models and control problems
Foreword

In the control of electric networks, two types of problems are encountered:

power and cost control, i.e.,
deliver the required power to all utilisers while

minimising costs (and possibly emissions) globally (general interest),
or maximising sold power at the minimum cost for one or more generators

(particular interest),

which are often con�icting objectives;
energy quality control, i.e.,
deliver electricity at the required voltage and frequency, which necessarily
involves cooperation as all the generators (and loads) are coupled by the
network (no particular interest makes sense here).

The above problems are apparently intertwined, in a way that however
depends on the generator operation.

Also, only generators act to provide control: the power demand by loads is
considered exogenous (i.e., a disturbance).
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Models and control problems

In this respect, two generator types are in fact distinguished:

with rotating masses, i.e., with an alternator (e.g. thermo, nuclear, hydro,
wind, tidal, thermal � or �thermodynamic� � solar),
and without rotating masses, i.e., with an inverter (e.g. photovoltaic solar).

Rotating masses inherently couple power and frequency, as a power excess or
de�ciency accelerates or decelerates the masses, thereby altering frequency.

This does not hold true when no rotating mass is present.

Other problems exist that do not �t in the space of this course, like e.g.
reactive power control.

Since we aim at system-level principles and models, we shall examine
generators having the thermoelectric case as reference, and then generalise to
a feasible extent.

Our KPIs will be power and frequency error, generation cost, and
transmission losses.
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Models and control problems

When moving from generation to network control, another relevant problem
is encountered:

load �ow, i.e.,
delivering power without overloading transmission lines, and possibly
minimising line losses.

Load �ow can just provide constraints for power and quality control to avoid
overloads (and we shall just say some words on this)

or be part of the overall optimisation, leading to the optimal �ow problem
that we cannot treat here.

Finally, as we shall see soon, power and quality problems require to abstract
di�erent generator and network element interfaces.

Let us now proceed to model generators, starting with the problem of
(active) power � and frequency � control.

As anticipated, we start from the thermoelectric case and then extend the
ideas.
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Models of electric components
for power and frequency control

Generators
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Thermoelectric generators
Basics (power and frequency control)

These generators include a rotating mass, whence the power�frequency
coupling.

We consider as reference case an islanded generator (no other generators,
just one feeding an equivalent network load).

Synthesis of operation:

fuel burns in a furnace and produces heat;
heat turns water into superheated steam;
steam moves a turbine;
the turbine moves the alternator,

The generator has its internal controls, which we do not represent,

and we also disregard the details about the water/steam path (circulation,
once-through)...

since the matter is treated in dedicated courses, and is not to be represented
in our system-level models.
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

We start from the prime mover, i.e., the system having fuel as inlet and
mechanical power for the alternator as outlet.

For simplicity we take as exogenous input the combustion power Pc released
to the main energy storage (steam); fuel consumption will come into play
later on.

In so doing we neglect heat storage in the combustion chamber and the �ue
gas path as they are very small w.r.t. those in the metal and water/steam
path, which we assume thermally coherent.

The stored energy balance is thus

Ė = Pc − Ploss − Pt

where Ploss is the power lost to the external environment and Pt the power
drawn by the turbine.

Alberto Leva Automation of Energy Systems 106 / 282



Thermoelectric generators
A system-level model (power and frequency control) � prime mover

We simplistically assume that the main energy storage is composed of
saturated steam and its mass is constant; we thus relate Ploss to the
di�erence between the saturation temperature at the steam pressure p (which
thereby comes to represent the stored energy) and the external temperature,
as

Ploss = Gloss(Tsat(p)− Text)

where Gloss is an equivalent thermal conductance.

Even more simplistically, thus, since in general Tsat(p)� Text , we write

Ploss = KlossE/M

where Kloss is a convenient parameter and the division by M represents the
fact that Ploss depends on the steam speci�c state; Kloss is of course related
to the dispersing surface.
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

We now make another simplistic assumption by disregarding the superheating
that steam undergoes prior to traversing the turbine valve, and assume Pt to
depend on the steam pressure (that is, on E/M) and the turbine valve
opening θ ∈ [0, 1] as

Pt = θKdrawE/M

where Kdraw is another parameter.

The mechanical power reaching the alternator is then obtained by accounting
for a mechanical e�ciency, assumed constant and denoted by ηm, as

Pm = ηmPt .
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

Putting it all together, we have{
Ė = Pc − KlossE/M − θKdrawE/M

Pm = ηmθKdrawE/M

Note that [KlossE/M] = [KdrawE/M] = [W ] since θ and ηm are
adimensional, thus [Kloss/M] = [Kdraw/M] = [1/s] and we can write

Ė = Pc −

(
1

Tloss

+
θ

Tdraw

)
E

Pm =
ηm

Tdraw

Eθ

In the state equation above, Tloss and Tdraw are interpreted as the time
constants with which energy is respectively lost into the environment and
yielded to the alternator at full throttling (turbine) valve opening.
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

Notice that the plant size, intuitively indicated e.g. by (some nominal value
for) the contained water/steam mass M, in this formulation comes to be
represented by the introduced time constants (larger plant, larger M, larger
Tloss and Tdraw ).

Of course models like this one are in the large extremely coarse, and for
real-life uses they could only have local validity around an operating point.

Treating such aspects strays from the course, however, and therefore we shall
just use the model as is since this is more than enough for our purposes.
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

We can furthermore introduce a generator nominal power Pn and denote by
Trest the time required to restore the generator to its �nominal energy
storage�, thereby de�ned as En = PnTrest . Dividing equations by En hence
gives 

ė =
1

Trest

pc −

(
1

Tloss

+
θ

Tdraw

)
e

pm = ηm
Trest

Tdraw

e θ

where pc = Pc/Pn and pm = Pm/Pn are respectively the normalised
combustion and mechanical powers, while e = E/En is the normalised energy
storage (not the steam speci�c energy, beware).
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

As such, indicating � for this discussion only � the steam speci�c energy
[J/kg ] with espec , we could better rewrite the second model equation (mind
the di�erent meanings of espec and e) as

Pm = ηm Kdrawespec θ = ηm Kdraw
E

M
θ = ηm Kdraw

PnTrest

M
e θ

Thus, normalising by Pn,

pm = ηm Kdraw
Trest

M
e θ

Overall, the quantity kθ := KdrawTrest/M acts as sort of a �valve gain�
cascaded to the mechanical e�ciency. Investigating its role would however
require relating also the contained mass to the energy state, which we do not
want to do for our purposes.

Alberto Leva Automation of Energy Systems 112 / 282



Thermoelectric generators
A system-level model (power and frequency control) � prime mover

Thus, we shall simply write ė =
1

Trest

pc −

(
1

Tloss

+
θ

Tdraw

)
e

pm = ηmkθ e θ

and for simplicity (without didactic loss for this course) assume kθ = 1, hence
omitting it hereinafter.

Given all the above, we shall take as generator model the dynamic system ė =
1

Trest

pc −

(
1

Tloss

+
θ

Tdraw

)
e

pm = ηm e θ
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

Now, determine the equilibrium of the previous model for constant inputs
pc , θ, which produces

e =
TdrawTlosspc

Trest(Tdraw + Tlossθ)
, pm = ηm e θ.

Let us simulate the prime mover model in Modelica, starting at the
equilibrium and applying steps to θ and pc , with

model SimpleThermoElecGenPM

parameter Real Pn = 100;

parameter Real Trest = 500;

parameter Real Tdraw = 500;

parameter Real Tloss = 1e9;

parameter Real etam = 0.95;

parameter Real thetabar = 0.8;

parameter Real pcbar = 0.8;

Real e(start=Tdraw*Tloss*pcbar/Trest/(Tdraw+Tloss*thetabar));

Real pc,pm,theta;

equation

der(e) = pc/Trest-(1/Tloss+theta/Tdraw)*e;

pm = etam*e*theta;

theta = if time<1000 then thetabar else thetabar+0.1;

pc = if time<5000 then pcbar else pcbar+0.1;

end SimpleThermoElecGenPM;
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

Issuing simulate(SimpleThermoElecGenPM,stopTime=10000) and then
plot({e,pm,pc}) produces

The θ step (t = 1000 s) produces a sudden pm response, then since pc is
constant pm settles back to the previous value while e decreases and settles,
both transients being dominated by the storage time constant.

The pc step (t = 5000 s) makes both pm and e increase and settle with the
storage time scale.

Alberto Leva Automation of Energy Systems 115 / 282



Thermoelectric generators
A system-level model (power and frequency control) � prime mover

The linearised model in the vicinity of the equilibrium, setting
∆pc = pc − pc , ∆θ = θ− θ and ∆e = e − e, ∆pm = pm − pm, and taking as
outputs both ∆pm and ∆e, is

∆ė = −

(
1

Tloss

+
θ

Tdraw

)
∆e +

[
−

pcTloss

Trest(Tdraw + Tlossθ)

1

Trest

] [
∆θ
∆pc

]

[
∆pm
∆e

]
=

[
ηmθ
1

]
∆e +

 ηmpcTdrawTloss

Trest(Tdraw + Tlossθ)
0

0 0

[∆θ
∆pc

]

Notice that it is asymtptocally stable as Tdraw , Tloss and θ are all positive.
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

The corresponding transfer matrix is

Γ(s) =

[
Γθm(s) Γcm(s)
Γθe(s) Γce(s)

]
=


∆pm(s)

∆θ(s)

∆pm(s)

∆pc(s)
∆e(s)

∆θ(s)

∆e(s)

∆pc(s)

 = . . .

=
1

1 + s
TdrawTloss

Tdraw+Tlossθ


ηmT2

draw
Tlosspc

Trest (Tdraw+Tlossθ)
(1 + sTloss)

ηmTdrawTlossθ

Trest

− TdrawT2
loss

pc

Trest (Tdraw+Tlossθ)

TdrawTloss
Trest


Note that all the elements have relative degree 1 except for ∆pm/∆θ, which
has relative degree 0; this is consistent with the simulated responses.
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Thermoelectric generators
A system-level model (power and frequency control) � prime mover

The Maxima script used for the previous computations is reported for
reference:

/* Model

*/

se : pc/Trest-(1/Tloss+theta/Tdraw)*e;

pm : etam*e*theta;

/* Equilibrium

*/

ebar : rhs(solve(subst([pc=pcbar,theta=thetabar],se),e)[1]);

pmbar : ratsimp(etam*ebar*thetabar);

/* Linearised model state space matrices

*/

A : subst([pc=pcbar,theta=thetabar,e=ebar],jacobian([se], [e]));

B : subst([pc=pcbar,theta=thetabar,e=ebar],jacobian([se], [theta,pc]));

C : subst([pc=pcbar,theta=thetabar,e=ebar],jacobian([pm,e],[e]));

D : subst([pc=pcbar,theta=thetabar,e=ebar],jacobian([pm,e],[theta,pc]));

/* Linearised model transfer matrix. Note that here A is actually scalar; the

syntax for the matrix-A case would be C.invert(s*ident(size_of_a)-A).B+D

*/

Gamma : factor(C.B*invert(s-A)+D);
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Thermoelectric generators
A system-level model (power and frequency control) � cost

For simplicity we identify here cost and fuel consumption (i.e., we do not
include here plant maintenance, personnel and so on).

Combustion is not equally e�cient at all plant loads, i.e. � looking at the
thermal load � for all values of pc .
A speci�c consumption cs ([kg of fuel per J], i.e., [kg/s of fuel per W]) is
thus de�ned, which is typically a decreasing function of Pc in the admissible
operation range, which normalised as done for pc , in turn corresponds to an
interval (pc,min, pc,max):

pc,min is the minimum �technical� load below which the generator cannot be
operated, and may be something like 0.2-0.25,
while pc,max is the maximum �guaranteed� power for the generator to work
safely, and can be slightly greater than the unity, say 1.05�1.10, to allow
transient �exceptional� power releases to the network.

Given the above, the fuel mass �owrate wc and pc are related by

wc = cs(pcPn)pcPn,

which in our model we use to compute wc while maintaining pc as control
input, for simplicity and consistency with our scope.
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Thermoelectric generators
A system-level model (power and frequency control) � balance at the alternator

The active power demanded by the load is exogenous for the generator;
denote it with Pe .
Thus, the energy equation for the rotating mass (turbine and alternator)
reads

Jωω̇ = Pm − Pe

where J is the total inertia seen at the shaft (have this in mind when we shall
talk about multiple generators and not an islanded one as we are doing now),
and ω the angular velocity (for us identi�ed with the electric frequency).
The equation above yields possible equilibria at any ω, provided that the
(constant) values Pm and Pe coincide. Linearising with obvious notation,
thus,

∆ω̇ = −
Pm − Pe

Jω2 ∆ω +
1

Jω
(∆Pm −∆Pe)

Assuming thus that ω is regulated � which we shall guarantee shortly � at its
desired value ωo and recalling that at the equilibrium Pm = Pe , we have

∆̇ω =
1

Jωo
(∆Pm −∆Pe)
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Thermoelectric generators
A system-level model (power and frequency control) � balance at the alternator

Normalising Pm,e with Pn and ω with ωo and using δ for the variations of
normalised quantities, �nally,

∆ω̇

ωoPn
=

1

Jωo

(
∆Pm

ωoPn
−

∆Pe

ωoPn

)

which means, rearranging,

δω̇ =
Pn

Jω2
o

(δPm − δPe)

Note that [Pm/Jω
2
o ] = [W /J] = [1/s]; the quantity Jω2

o/Pm is typically
denoted by TA.

No homework this time, but please review lecture notes.
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Lecture 6 (2L)

Models of electric components for power and frequency control
Generators (cont'd, and including control)
Network
Extending from thermo to other generator types
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Thermoelectric generators
A system-level model (power and frequency control)

We have described the (linearised) (∆θ,∆pc)→ (∆pm,∆e) relationship as a
�rst-order transfer matrix Γ(s).

This is adequate at system level, where in fact slightly more complex models
(up to the third order) are used that account more precisely for the generator
structure, which here we disregard for simplicity.

Recall that the energy content is related to the steam pressure p in the
generator; in fact dealing with p instead of a generic �energy� content e is a
major reason for using the mentioned slightly more complex models.

For consistency and realism we shall thus talk about pressure control, that
however will just be mentioned: recall that this means in any case controlling
the energy storage in the generator.

Approaching thus control, our �rst problem is how to regulate the mechanical
power released to the alternator, and the generator pressure.

This can be done in three ways, named �boiler follows�, �turbine follows�, and
�variable (or sliding) pressure�.
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Thermoelectric generators
A system-level model (power and frequency control)

Boiler follows
Idea: use θ to modulate Pm
and Pc � i.e. wc � to keep p as constant as possible.
Pros: very fast response of Pm to its set point.
Cons: transient pressure variations, generally not excessive but of noticeable
entity, and potentially detrimental especially in the long run (stress).

Turbine follows
Idea: use θ and Pc the other way round w.r.t. boiler follows.
Pros: far better pressure control.
Cons: power response much slower.

Sliding pressure
Idea: set θ to its max value (valves fully open)
and control Pm by acting on wc .
Pros: minimum turbine upset.
Cons: power response extremely slow (the boiler is not even concerned with
restoring its pressure).
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Thermoelectric generators
A system-level model (power and frequency control)

As a small but control-relevant re�nement, we need to describe actuators,
since of course neither θ nor Pc can be varied instantaneously.

For this purpose, we introduce a diagonal transfer matrix

A(s) =


1

1 + sTθ
0

0
1

1 + sTPc


accounting for the actuators' dynamics, so that[

∆θ(s)
∆Pc(s)

]
= A(s)

[
∆θc(s)

∆Pcc(s)

]
In the above equation θc and Pcc are the actuator commands, while θ and Pc
represent the real actions on the plant. This means that we actually have to
deal with the transfer matrix Γ(s)A(s).
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Thermoelectric generators
A system-level model (power and frequency control)

To lighten our notation, however, we shall from now on drop the �c� subscript
standing for �command� and consider A(s) as part of the process, thereby
always dealing with the cascade of A and Γ, but calling its inputs θ and Pc as
we did up to now while not accounting for the actuators, i.e., containing just
Γ and not A.

In other words, we shall write[
∆Pm(s)
∆e(s)

]
= Γap(s)

[
∆θ(s)

∆Pc(s)

]
where Γap(s) = Γ(s)A(s)
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Thermoelectric generators
A system-level model (power and frequency control)

Coming back to the main subject, the policy to use is chosen � among the
mentioned three � based on the generator size, its type (e.g. circulating vs.
once-through, details in speci�c courses), role in the network (base load vs.
fast dispatching), and cost of transients (over�ring and so on).

Sometimes the policy is varied over time, depending e.g. on the present load
(generated power).

In any case, once the control variable for Pm is chosen (it can be either θ or
Pc , and we denote it by uP) and given the generator structure, in the
linearised context we have to do as the system to be controlled with a
transfer function, derived from from Γap(s) � recall the notation remark just
given) � that we shall generically call G (s), i.e.,

G (s) =
∆Pm(s)

∆uP(s)

∣∣∣∣∣
Gen. structure, Pm control policy
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Thermoelectric generators
A system-level model (power and frequency control)

Of course we can normalise also G (s) with respect to the nominal power Pn
and a nominal control uPn, obtaining

g(s) =
δPm(s)

δuP(s)

where uPn is 1 or again Pn if uP is θ or Pc , respectively.

In any case, the plant to be controlled (an islanded generator, remember) is
described as

where the normalised variation δPe of the power demanded by the load acts
as a disturbance.

Recall that g(s) has low order (here two, with slightly mode re�ned models
say four��ve) and is asymptotically stable.
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Thermoelectric generators
Power and frequency control

For the islanded generator case, control can be carried out as shown below:

This concludes the reference case. Let us now consider multiple generators in
a network.
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Network
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Networked generators
Power and frequency control

In the case of multiple generators, at our system level we introduce the rigid
synchronous network hypothesis: all the masses rotate together at the same
speed, no swinging.

In this case all the mechanical powers (not the normalised powers, beware)
sum together, while there is still a single electric power demand (the total for
the network) subtracted from them. The system under control is thus

where J is the total network inertia (there is no overall TA as each of the N
generators has its own Pn).
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Thermoelectric generators
Power and frequency control

The scheme for the islanded generator is easily extended to multiple
generators as

Here too the network intrinsic integrator (1/Jω2
os) guarantees zero

steady-state power error.

However the regulators in this scheme cannot encompass integrators,
because in that case the generation distribution would not be controllable.
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Thermoelectric generators
Power and frequency control

To understand why, observe that the scheme is equivalent to

where ∆Pmtot is the total mechanical power variation (not normalised), and

F (s) =
N∑
i=1

Ri (s)gi (s)Pni .

Possible integrators in the Ri regulators would thus be in parallel, whence the
controllability loss.
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Thermoelectric generators
Power and frequency control

Solution: to have zero steady-state frequency error there must be one
integrator. thus

employ for the primary regulators Ri (s) a type 0 structure (most frequently a
pure proportional term K , whence the name �K∆f � frequently encountered
for them),
and introduce a secondary frequency control in the form of a single integrator
per network, having as input the frequency error;
the output of the secondary regulator acts as an additive correction on the
output of each K∆f controller via a gain βi that can be di�erent for each
generator, and dictates how much that generator will be asked to participate
to the secondary control.
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Some words
on other generator types
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Solar plant
of the thermal (thermodynamic) type

Quite traditional type (receiver = SG)

The primary energy source (sun) is clearly uncontrollable
⇒ one can think of an exogenously varying prmary energy source.
What is controllable, by focusing or de-focusing the mirrors, is the amount of
the available power that the plant actually draws
⇒ the mirror focusing plays more or less the role of Pc , but subject to the
variability above. Note that in general mirrors are kept at full focus for
e�ciency, so the variability does matter.
Main problems: the mentioned variability and the di�culty of introducing
�large� energy storages (w.r.t. that provided by the SG alone).
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Solar plant
of the thermal (thermodynamic) type

More recent type (an example)

The primary �uid (e.g., molten salt) allows for a signi�cant heat storage,
thereby smoothing the prime source variability as seen by the SG
⇒ the situation is more similar to the reference thermo case.
Note: the �gure is highly simpli�ed as for the storage management.

Alberto Leva Automation of Energy Systems 137 / 282



Hydro plant

Very simple scheme:

At the generator control time scale, the energy reserve (basin) may be
considered practically unlimited.
The mechanical power can be assumed to be an algebraic function of the
turbine valve command, i.e.,

Pm = f (θ),

although rigorously depending also on the rotor and �uid speed (losses are due
e.g. to residual jet kinetic energy).

...and so forth for other generator types.
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Generators without rotating masses
(just a couple of words)

Notable examples are photovoltaic generators and fuel cells.

In both cases there is a primary source, either well controllable (fuel) or vastly
exogenous (solar radiation).

Then, there may or may not be a signi�cant reserve (this is not the case e,g,
for a photovoltaic generator without batteries).

The process of generating electricity does not involve mechanics and is mostly
solid-state, thus one can think that power can be commanded independently
of frequency, while synchronisation with the network is always guaranteed.

In one word, these generators too fall in our abstract model structure.

No homework this time too, but (again) review lecture notes as we shall
continue with a practice session. Next time bring a pocket calculator and
some semilogarithmic paper sheets.
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Lecture 7 (2P)

Classroom practice

Applying the OO paradigm
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Electric generators and network
OO models

Up to now we have been using for compound models (e.g., those introduced
for control) a BO approach.

Of course an OO one can be adopted as well.

To this end, �rst de�ne a connector representing rigid synchronous coupling
(it makes frequency equal in all the connected models, thus same speed, thus
no swinging) as

connector PowerFreqPort

Real f; // Frequency

flow Real P; // Power

end PowerFreqPort;
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Electric generators and network
OO models

Then de�ne a network model containing the single inertia, as
model ElectricNetworkPF

signalIn Pe; // Electric power (exogenous)
PowerFreqPort Pg; // Port to connect all generators
parameter Real J = 1000; // Inertia
parameter Real fo = 50; // Nominal (and initial) frequency
Real f(start = fo); // Frequency

equation
der(f) = (Pg.P-Pe)/(J*8*3.14^3*fo^2); // der(2*pi*f)=(Pg-Pe)/(J*(2*pi*fo)^2)
f = Pg.f;

end ElectricNetworkPF;
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Electric generators and network
OO models

Finally, write a (thermo) generator OO model as
model SimpleThermoElecGenPF

signalIn theta; // Throttling valve command
signalIn Pc; // Combustion power command
PowerFreqPort Pg; // Port to network
parameter Real Pn = 100;
parameter Real Trest = 500;
parameter Real Tdraw = 500;
parameter Real Tloss = 1e9;
parameter Real etam = 0.95;
parameter Real thetabar = 0.8;
parameter Real pcbar = 0.8;
Real e(start=Tdraw*Tloss*pcbar/Trest/(Tdraw+Tloss*thetabar));
Real pc,pm;

equation
der(e) = pc/Trest-(1/Tloss+theta/Tdraw)*e;
pm = etam*e*theta;
pc = Pc/Pn;
pm = Pg.P/Pn;

end SimpleThermoElecGenPF;
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Summing up...

...let us do some simulations with an islanded generator managed with BF,
TF, SP, with primary only and primary/secondary control, and comment.

A more complete Modelica library for the concepts just exposed, including
control-related ones and using the Modelica Standard Library (MSL)
connectors, is available on the course site (AES2012_PFcontrol.mo).
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Lecture 8 (2P)

Classroom practice

Power and frequency control � primary and secondary regulation
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Lessons to learn
i.e., just one slide for this lecture's objectives

View islanded generator control as a composition of primary and secondary
actions behaving like a proportional and an integral one, understanding their
roles via the typical transient caused by a step variation in the demanded
power.

Transpose the same idea of �equivalent PI� to the networked case,
interpreting primary (distributed) and secondary (centralised) actions along
the same reasoning as for the islanded case.

Discuss the role of secondary distribution coe�cients in the networked case.

Understand the usefulness of a �low-frequency� (from daily to down to say
15-minutes scale) scheduling of the power to be generated and its
distribution,...

...that is sometimes called tertiary control; this is a basically feedforward
action aimed at optimising cost, and will be the subject of the next lectures.
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Lecture 9 (2L)

Generation cost optimisation

The basics and an introductory example
A methodology and some considerations
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The basics
and an introductory example
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Problem statement
Preliminaries

To understand, better not to reason with normalised quantities.

Consider a network with N generators: at any given moment, the total
mechanical power must equal the electric power demand, i.e.,

N∑
i=1

Pmi = Pe

Primary and secondary control can ensure this, and also keep frequency to the
set point (if the power request is feasible, of course). But what about cost?

Knowing the e�ciency curve of each generator,and talking for better
precision of �generated� (subscript g) rather than �mechanical� power, one
can naturally write N functions relating each Pgi [W ] to a �cost rate�
ci [e/s] or [e/h].

Clearly, ci (Pgi ) is a monotonically increasing function.

Of course each generator has limits, i.e., Pgi,min ≤ Pgi ≤ Pgi,max .
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Problem statement
Cost function

Supposing for simplicity that the purpose is to minimise the overall cost, it
can be stated as that of minimising the overall cost rate, hence as

min
N∑
i=1

ci (Pgi )

s.t.
N∑
i=1

Pgi = Pe ,

Pgi,min ≤ Pgi ≤ Pgi,max , i = 1 . . .N.

Note: the problem can be much more complex as sets of generators may aim
at minimising their cost while together generating a desired Pe or share of
Pe , but we do not have enough time do delve into such further details.
Incidentally, we shal foresee other sources of additional complexity.

Let us then understand the principles, and defer any possible re�nement to
specialised courses.
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Problem statement
Generator cost models

Most frequently, cost models are polynomial and up to cubic in power.
A typical form is

ci (Pgi ) = (kg1Pgi + kg2P
2
gi + kg3P

3
gi )kF + kom0 + kom1Pgi

where
ci [e/h] is the cost rate,
Pgi [W ] is the generated power,

kgj , j = 1 . . . 3 [J/(hW j )] are cost coe�cients for pure generation,
kF [e/J] is the fuel cost per unit of energy,

kom`, ` = 0, 1 [e/(hW `)] are cost coe�cients for Operation & Maintenance.

Note that, quite logically, the pure generation cost nulli�es for Pgi = 0,
while the O&M cost does not.
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Problem statement
Generator cost models

Why cubic?
Because the fuel to generated power ratio rfP(Pg ) = Qf (Pg )/Pg , where Qf is
the power yielded by fuel [W ] and Pg the generated power, thus making rfP
adimensional, typically has a minimum at the optimal operating point
(by construction generally close to the maximum or rated power Pg ,max).
A good way to synthetically model this is to describe function rfP(Pg ) as a
parabola, specifying

the optimal (minimum) fuel to generated power ratio rofP ,
the fraction pog of Pg,max corresponding to that optimal ratio, where pg is
de�ned as Pg/Pg,max ,
and the fuel to generated power ratio rml

fP (> rofP) at the minimum sustainable
load, i.e., at pml

g = Pg,min/Pg,max ,

which gives

rfP(pg ) = rofP +
rml
fP − rofP(
pog − pml

g

)
2

(
pg − pog

)
2

thus

rfP(Pg ) = rofP +
rml
fP − rofP

(Po
g − Pg,min)2

(
Pg − Po

g

)
2
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Problem statement
Generator cost models

Alternatively, rfP(Pg ) can be obtained by interpolating experimental points
(and again, a parabola normally su�ces).

Therefore, no matter how rfP(Pg ) is obtained, Qf (Pg ) can be expressed as

Qf (Pg ) = rfP(Pg )Pg =

(
rofP +

rmlfP − rofP(
Po
g − Pg ,min

)2 (Pg − Po
g

)2)
Pg

that apparently contains powers of Pg from one to three, like we just wrote
for the term kg1Pgi + kg2P

2
gi + kg3P

3
gi .

In detail,

kg1 =
rmlfP P

o 2
g − rofPPg ,min

(
2Po

g − Pg ,min
)(

Po
g − Pg ,min

)2 , kg2 =
2Po

g

(
rofP − rmlfP

)(
Po
g − Pg ,min

)2 ,
kg3 =

rmlfP − rofP(
Po
g − Pg ,min

)2.
Alberto Leva Automation of Energy Systems 153 / 282



Problem statement
Generator cost models � an example

The above cost model with rofP = 2.5, rmlfP = 5, Po
g = 85, Pg ,min = 20

(supposing Pg ,max = 100 for the plots) produces

and, for completeness,

kg1 = 6.775, kg2 = −0.101, kg3 = 5.917 · 10−4.

Note: rfP can be interpreted as the inverse of the fuel-to-power e�ciency
ηfP(Pg ) = Pg/Qf (Pg ), ranging in this case from 0.4 (optimal point) to 0.2
(minimum sustainable load).
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An introductory case
Two generators

Generator data:
Pg1,max = 100 Pg1,min = 20 Po

g1 = 80 rofP1 = 3 rml
fP1 = 5

Pg2,max = 50 Pg2,min = 5 Po
g2 = 35 rofP2 = 3.5 rml

fP2 = 8

Network power demand: Pe,max = 130, Pe,min = 10.

We suppose that generators can be activated or deactivated (almost)
instantaneously and at no cost (a very strong hypothesis on which we shall
return later on).
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An introductory case
Two generators

Basic idea (which is general w.r.t. the example):

take the forecast power demand P̂e for the next �period� (day, hour,...),

determine the optimal generation distribution {Popt
gi } yielding P̂e

at minimum cost,
send each of the so obtained generation requests Popt

gi to the corresponding
generator as a bias value,
and let primary and secondary control act as usual.

Let us now concentrate on the P̂e 7→ {Popt
gi } problem, other aspects later on.
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An introductory case
Two generators

Consider all the generator combinations, and determine the minimum and
maximum power that can be generated by each of them:

G1→ [20, 100], G2→ [5, 50], G1 + G2→ [25, 150].

Consequently, divide the P̂e range in intervals Ii and determine the feasible
combinations for each of said intervals (easier to show than to explain):

20 100
G1 |-------------------------------|

5 50
G2 |-----------------|

25 150
G1+G2 |-------------------------------------------------|

I1 [10, 20] → G2
I2 [20, 25] → G1,G2
I3 [25, 50] → G1,G2,G1+G2
I4 [50, 100] → G1,G1+G2
I5 [100, 130] → G1+G2
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An introductory case
Two generators

For combinations with more than one generator, the optimal distribution
(minimum total cost) has to be found.

With only two generators the only case to consider is G1+G2, and we can
proceed by substitution (we shall see something more general later on):

Pg2 = P̂e − Pg1 ⇒ c12(Pg1) = c1(Pg1) + c2(P̂e − Pg1)

Then we take the �rst and second derivative of c12(Pg1 w.r.t. the only
remaining independent variable Pg1,

�nd a possible minimum cost copt12 (P̂e) inside the power range of both
generators (otherwise the minimum is at one of the two distribution extrema),

determine the power distribution � i.e., Popt
g1 (P̂e) � corresponding to the

minimum.
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Optimal generation distribution
with a given set of active generators

Graphical interpretation for the G1+G2 combination:

As can be seen, for a given P̂e , the optimal distribution can be inside the
segment of the Pg1 + Pg2 = P̂e straight line, or at one of its extrema.
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An introductory case
Two generators

As illustrated by the previous graphical interpretation, for each value of P̂e ,
the combination can now be chosen that provides the minimum cost; this is
shown below:
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An introductory case
Two generators � end of the example

Finally, based on the choice just made, the bias (or �tertiary control�) values
Pb1,2 for Pg1,2 are determined. We omit this part as we shall see it in the
following examples and exercises.

Let us now quit this introductory example and the naïve technique used to
address it, moving toward establishing a methodology.

To this end, we split the problem in three:

determining the optimal generation distribution given the active generators,
integrating tertiary control with primary/secondary control, and discussing
the mutual in�uences.
determine both the active generators and the distribution (just a few words
on this),

Before entering the subject, however, we need to brie�y review some
mathematics.
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Brief math review
Constrained optimisation � Lagrange multipliers � Karush-Kuhn-Tucker (KKT) equations

Problem statement

We want to minimise a real function f of Nx real variables xi , i.e.,

f (x1, x2, . . . xNx ), f (·, ·, . . . ·) ∈ <, xi ∈ <, i = 1 . . .Nx ,

subject to Ne equality constraints in the form

gi (x1, x2, . . . xNx ) = 0, gi (·, ·, . . . ·) ∈ <, i = 1 . . .Ne ,

and to Ni inequality constraints in the form

hi (x1, x2, . . . xNx ) ≥ 0, hi (·, ·, . . . ·) ∈ <, i = 1 . . .Ni .

Caveat: this is not a math lecture. We shall implicitly assume that �everything is
regular enough�, and not even mention several hypotheses that would be necessary
for a rigorous treatise. We just want to understand the methods' operation and
signi�cance in our context.
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Brief math review
Only equality constraints � Lagrange multipliers

Form the problem's Lagrangian as

L = f (x1, x2, . . . xNx ) +
Ne∑
i=1

λigi (x1, x2, . . . xNx )

introducing Ne additional real unknowns λi , named the Lagrange multipliers.

Compute the gradients of L w.r.t. vectors x = [x1 . . . xNx ]′ ∈ <Nx and
λ = [λ1 . . . λNe ]′ ∈ <Ne , i.e.,

∇xL(x , λ) =

[
∂L

∂x1

∂L

∂x2
. . .

∂L

∂xNx

]
, ∇λL(x , λ) =

[
∂L

∂λ1

∂L

∂λ2
. . .

∂L

∂λNe

]
,

having respectively Nx and Ne (function) components.
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Brief math review
Only equality constraints � Lagrange multipliers

Observe that the k-th component of ∇xL is

∂L

∂xk
=

∂f

∂xk
+

Ne∑
i=1

λi
∂gi

∂xk
=

∂f

∂xk
+ λ′ ·


∂g1
∂xk
...

∂gNe
∂xk


where · denotes the scalar product. Therefore

∇xL = ∇x f +λ′ ·


∂g1
∂x1

· · · ∂g1
∂xNx

...
...

∂gNe
∂x1

· · · ∂gNe
∂xNx

 = ∇x f +λ′ ·

 ∇xg1
...

∇xgNe

 = ∇x f +λ′Jxg

where Jxg is the Jacobian of the constraints g w.r.t. x .

Also, observe that the k-th component of ∇λL is gk .
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Brief math review
Only equality constraints � Lagrange multipliers

Now, suppose that (xo , λo) is a solution for the system of Nx + Ne equations{
∇xL(x , λ) = 01×Nx

∇λL(x , λ) = 01×Ne

in the Nx + Ne unknowns (x , λ), termed the Lagrangian Multipliers (LM)
equations.

The second equation above tells us that vector xo ful�ls the constraints g(x).
Let us now consider the other equation, and distinguish two cases.
Case 1: ∇x f in xo is a zero vector.

In this case xo is a stationary point for function f (x) independently of the
presence of the constraints g(x).
In addition, given the expression of ∇xL, the equation reduces to λ′Jxg = 0,
and since (xo , λo) ful�ls it, either λo is a zero vector, or the gradients
∇xgi , i = 1 . . .Ne , are linearly dependent when evaluated in xo .
If the ∇xgi are linearly dependent in xo we shall then say that xo may not be
a regular point for the constraints g ; however, for the problems encountered
here, we are not interested in analysing this situation: details are in specialised
courses.
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Brief math review
Only equality constraints � Lagrange multipliers

Case 2: ∇x f in xo is not a zero vector.

In this case λo cannot be a zero vector either, or the considered equation
∇x f + λ′Jxg = 0 cannot be satis�ed (contrary to the hypothesis).
Also, rewritten as ∇x f = −λ′Jxg , the same equation tells us that the
gradients of f (x) and g(x) w.r.t. x are parallel in xo .
Let now zo = f (xo), and consider the hypercurve in <Nx+1 obtained by
intersecting the hypersurfaces z = f (x) and g(x) = 0. Moving on that
hypercurve away from (xo , zo), that apparently belongs to it, locally produces
no variation of z . Therefore, xo is a (local) stationary point for f (x)
constrained by g(x) = 0.
Since this may be hard to grasp, let us see an example with Maxima:

f : x1^2+x2^2;
g : x1-1; /* grad_x g = [1 0] */
L : f+lam*g;
solve([diff(L,x1),diff(L,x2),

diff(L,lam)],[x1,x2,lam]);
plot3d([f,g,0, [x1,0,2], [x2,-1,1]]);
subst([x1=1,x2=0],jacobian([f],[x1,x2])); /* grad_x f || grad_x g in xo */
subst([x1=1,x2=1],jacobian([f],[x1,x2])); /* and not e.g. here */
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Brief math review
Only equality constraints � Lagrange multipliers

Conclusion: xo ful�ls the LM equations
⇒ it is a candidate constrained optimal point.

We have then found a set of necessary, �rst-order conditions for local
constrained optimality (enough for us in this course).

Homework: positively review your notes, next time ask questions if needed.
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Lecture 10 (2L)

Generation cost optimisation

A methodology and some considerations (cont'd)
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Brief math review
Only equality constraints � Lagrange multipliers

Recap
We want to minimise a real function f of Nx real variables xi , i.e.,

f (x1, x2, . . . xNx ), f (·, ·, . . . ·) ∈ <, xi ∈ <, i = 1 . . .Nx ,

subject to Ne equality constraints in the form

gi (x1, x2, . . . xNx ) = 0, gi (·, ·, . . . ·) ∈ <, i = 1 . . .Ne ,

(ie.e, no inequality constraints for the moment).
We form the Lagrangian

L(x , λ) = f (x1, x2, . . . xNx ) +

Ne∑
i=1

λigi (x1, x2, . . . xNx ) = f (x) + λ · g(x)

where x and λ are vectors, and g the vector of functions gi .
We solve {

∇xL(x , λ) = 01×Nx
∇λL(x , λ) = 01×Ne

for x and λ, which provides the stationary points x for f constrained by g
(overlooking quite a bit of mathematical details not relevant for our use of the
method) and the Lagrange multipliers at said points.
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Brief math review
Only equality constraints � Lagrange multipliers

Next question: is xo a minimum, a maximum, or neither?

The matter may get very tricky; here we limit our scope to analysing the
Hessian (matrix) of L, which we know to be an extension of the
second-derivative (concavity) test in the univariate case.

The Hessian is the second derivatives' matrix; let us see what its elements
look like in our problem:

Lxi xj (x, λ) := ∂2L(x,λ)
∂xi xj

= ∂2f (x)
∂xi xj

+ λ · ∂
2g(x)
∂xi xj

= fxi xj + λ · gxi xj ,

Lxiλj (x, λ) := ∂2L(x,λ)
∂xiλj

= ∂
∂λj

(
∂f (x)
∂xi

+ λ · ∂g(x)∂xi

)
=
∂gj (x)

∂xi
= gjxi

,

Lλiλj (x, λ) := ∂2L(x,λ)
∂λiλj

= 0

Note that we are assuming �everything regular enough�, so e.g. mixed
derivatives are continuous, hence the order of di�erentiation in them is
irrelevant and the Hessian is symmetric.
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Brief math review
Only equality constraints � Lagrange multipliers

We can now form the Hessian, starting from the λλ derivatives:

Hx,λL =



Lλ1λ1 · · · Lλ1λNe Lλ1x1 · · · Lλ1xNx
...

...
...

...
...

LλNe λ1 · · · LλNe λNe LλNe x1 · · · LλNe xNx
Lx1λ1 · · · Lx1λNe Lx1x1 · · · Lx1xNx
...

...
...

...
...

LxNx λ1 · · · LxNx λNe LxNx x1 · · · Lx1xNx


and then, bringing previous expressions and symmetry in, we have

Hx,λL =



0 · · · 0 g1x1 · · · g1xNx
...

...
...

...
0 · · · 0 gNex1 · · · gNexNx

g1x1 · · · gNex1 fx1x1 + λ · gx1x1 · · · fx1xNx + λ · gx1xNx
...

...
...

g1xNx
· · · gNexNx

fxNx x1 + λ · gxNx x1 · · · fxNx xNx + λ · gxNx xNx


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Brief math review
Only equality constraints � Lagrange multipliers

As can be seen, the �rst Ne principal minors of Hx,λL, that for the sake of
precision is called a bordered Hessian, are zero.

Thus to apply the Hessian test we only need to compute the determinant of
Nx principal minors.

The test is then as follows (we do not have the space for any proof):

let xo be a stationary point for f constrained by g , and λo the corresponding
Lagrange multiplier vector;
let {mi} be the set of the Nx nonzero principal minor determinants of Hx,λL

evaluated in (xo , λo);
if the mi alternate in sign, and the sign of the last (the Hessian itself's
determinant) is that of (−1)Nx , then xo is a (local constrained) maximum;
if the mi have all the same sign, and that sign is that of (−1)Ne , then xo is a
(local constrained) minimum;
otherwise the stationary point is neither a maximum nor a minimum (and we
are not interested in further investigations).
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Brief math review
Only equality constraints � Lagrange multipliers � an example

Find the minimum and the maximum height (z coordinate) of the surface
z(x , y) = x2 + 2y2 constrained by (x − 2)2 + (y − 3)2 = 1.

Hint 1: �rst formulate the problem on paper, then use Maxima.

Hint 2: a geometric representation of the problem may help understand what
we are doing.

Solve the problem (5 minutes), then we work it out together.

Alberto Leva Automation of Energy Systems 173 / 282



Brief math review (cont'd)
Only equality constraints � Lagrange multipliers � a �nal remark

The Lagrange multipliers λi have an interesting interpretation as �shadow
cost� for the constraints.

More precisely, the value of the Lagrange multiplier for a speci�c constraint
gi is the rate at which the optimal value of the objective function f changes
if that constraint is changed from gi (x) = 0 to gi (x) = αi , αi being �very�
(rigorously, in�nitely) close to zero.

This has a signi�cant relevance for example when one can decide to input
power in a network by generating or purchasing that power: if a company can
purchase power for a price less than the shadow cost of the power balance
constraint, then doing so will reduce their overall cost.
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Brief math review (cont'd)
Equality and inequality constraints � Karush-Kuhn-Tucker (KKT) equations

Problem statement (recap)

We want to minimise a real function f of Nx real variables xi , i.e.,

f (x1, x2, . . . xNx ), f (·, ·, . . . ·) ∈ <, xi ∈ <, i = 1 . . .Nx ,

subject to Ne equality constraints in the form

gi (x1, x2, . . . xNx ) = 0, gi (·, ·, . . . ·) ∈ <, i = 1 . . .Ne ,

and to Ni inequality constraints in the form

hi (x1, x2, . . . xNx ) ≥ 0, hi (·, ·, . . . ·) ∈ <, i = 1 . . .Ni .
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Brief math review (cont'd)
Equality and inequality constraints � Karush-Kuhn-Tucker (KKT) equations

Major di�erence w.r.t. the equality-only (LM) case: a solution may not be a
stationary point, as some inequality constraints may bind it.

Note that we have already found such a case in the introductory example
with two generators:

Hence the LM equations cannot be used here (i.e., the Lagrange rationale
still works, but we need to introduce some modi�cations).
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Brief math review (cont'd)
Equality and inequality constraints � Karush-Kuhn-Tucker (KKT) equations

We form again the Lagrangian, this time however in the form

L(x , λ, µ) = f (x) +
Ne∑
i=1

λigi (x) +
Ni∑
j=1

µjhj(x)

= f (x) + λ · g(x) + µ · h(x)

where another multiplier vector µ = [µ1 . . . µNi
]′ ∈ <Ni is introduced w.r.t.

the case with equalities only, and h ∈ <Ni is the vector of functions hj ,

and give the following simple de�nitions:

if at a certain point xo a certain inequality constraint hj is satis�ed with
equality � i.e., if hj (x

o) = 0 � we shall say that the constraint hj is active (or
binding) in xo ;
if the constraint is satis�ed with the > sign � i.e., if hj (x

o) > 0 � we shall say
that it is inactive (or nonbinding) in xo ;
otherwise (obviously) the constraint is violated in xo .
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Brief math review (cont'd)
Equality and inequality constraints � Karush-Kuhn-Tucker (KKT) equations

Now (we again look for necessary conditions) suppose that xo is a solution
(i.e., an optimal point) with neither binding nor violated inequality constraint,
i.e., that hj(x

o) > 0 ∀j .
In this case xo is also a solution for the LM problem, as setting µ = 0 makes
the term µ · h(xo) contribute zero to L.

Note that also a solution for the LM problem violating some inequality
constraint would fall in the same case, but it is not di�cult to see if said
constraints are violated or nonbinding. In the following we assume that such
a feasibility check is always performed.

The most interesting case is when at least one inequality constraint is
binding. Let us expand a bit on this.
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Brief math review (cont'd)
Equality and inequality constraints � Karush-Kuhn-Tucker (KKT) equations

By adopting the same notation introduced in the LM problem, consider the
system Nx + Ne + Ni equations ∇xL(x , λ, µ) = ∇x f (x) + λ′Jxg(x) + µ′Jxh(x) = 0

∇λL(x , λ, µ) = g(x) = 0
µ′ ◦ ∇µL(x , λ, µ) = µ′ ◦ h(x) = 0

in the Nx + Ne + Ni unknowns (x , λ, µ), where ◦ denotes the Schur (element
by element) product.

Roughly speaking, a solution bound by some inequality constraints will satisfy
a LM problem where said constraints are �ctitiously treated as equality ones
(whence the last term in the �rst equation) provided that only those
(binding) constraints are actually accounted for, which is ensured by the third
equation (of course s.t. the necessary feasibility checks).

The system above is composed of the so-called KKT equations, and is of
course subject to the feasibility condition h(x) ≥ 0. We do not delve into the
involved mathematics anymore.
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Brief math review (cont'd)
Equality and inequality constraints � Karush-Kuhn-Tucker (KKT) equations

Just a further remark: if a constraint hi (x) ≥ 0 is inactive at optimality, i.e.
in xo , then the corresponding µi zero.

In the opposite case, the sign of µi dictates whether f increases or decreases
when entering or exiting the admissible region as dictated by the inequality
constraints.

Assuming that we want to minimise f (x) and the sign in the h(x) equality
constraints is ≥, requiring that f (x) increase when x enters the feasibility
region for all binding hi � i.e., that a KKT solution with at least one binding
inequality constraint be a candidate bound minimum � corresponds to
requiring that all nonzero µi be negative in it. Of course all the other
combinations are possible (we may want to maximise f (x) and inequality
constraints may have the ≤ sign).

Let us now go for two elementary examples.
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Brief math review (cont'd)
Equality and inequality constraints � KKT equations � elementary example 1

Minimise f (x) = x2 s.t. x ≥ 1 (⇒ x − 1 ≥ 0), x ≤ 2 (⇒ 2− x ≥ 0).

Maxima;

f : x^2;

h1 : x-1;

h2 : 2-x;

L : f+mu1*h1+mu2*h2;

KKTeqs : [diff(L,x),mu1*diff(L,mu1),mu2*diff(L,mu2)];

solve(KKTeqs,[x,mu1,mu2]);
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Brief math review (cont'd)
Equality and inequality constraints � KKT equations � elementary example 1

Solutions found:

x µ1 µ2 f (x) h1(x) h2(x)
S1 0 0 0 0 -1 2
S2 1 -2 0 1 0 1
S3 2 0 4 4 1 0

S1: infeasible.

S2: feasible, h2 nonbinding, h1 binding and entering the feasible region
increases f ⇒ can be a bound minimum.

S3: feasible, h1 nonbinding, h2 binding and entering the feasible region
decreases f ⇒ cannot be a bound minimum.

Hence, the solution is S2.
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Brief math review (cont'd)
Equality and inequality constraints � KKT equations � elementary example 1

This was really elementary, so let us have a visual look:

S1: infeasible.

S2: feasible, h2 nonbinding, h1 binding and entering the feasible region increases f
⇒ can be a bound minimum.

S3: feasible, h1 nonbinding, h2 binding and entering the feasible region decreases f
⇒ cannot be a bound minimum.
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Brief math review (cont'd)
Equality and inequality constraints � KKT equations � elementary example 2

Minimise f (x , y) = x2 + y2 s.t. x + y = 1, x ≥ 0.1, y ≥ 0.2.

Maxima;

f : x^2+y^2;

g : 1-x-y;

h1 : x-0.1;

h2 : y-0.2;

L : f+lambda*g+mu1*h1+mu2*h2;

KKTeqs : [diff(L,x),diff(L,y),

diff(L,lambda),

mu1*diff(L,mu1),mu2*diff(L,mu2)];

solve(KKTeqs,[x,y,lambda,mu1,mu2]);
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Brief math review (cont'd)
Equality and inequality constraints � KKT equations � elementary example 2

Solutions found:

x y λ µ1 µ2 f (x , y) g(x , y) h1(x , y) h2(x , y)
S1 0.5 0.5 1.0 0.0 0.0 0.50 0 0.4 1.5
S2 0.1 0.9 1.8 1.6 0.0 0.82 0 0.0 1.1
S3 0.8 0.2 1.6 0.0 1.2 0.68 0 0.7 1.8

All feasible, no candidate bound minimum.

The only candidate is S1, with no binding inequality. We thus need to check
the bordered Hessian:

H: matrix([0 , diff(g,x) , diff(g,y)],

[diff(g,x), diff(L,x,2) , diff(L,x,1,y,1)],

[diff(g,y), diff(L,y,1,x,1), diff(L,x,2)]);

We obtain

H =

 0 −1 −1
−1 2 0
−1 0 2


Note: in general H depends on (x , λ), this is a very particular case.
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Brief math review (cont'd)
Equality and inequality constraints � KKT equations � elementary example 2

Two principal minors to check (recall that in general the values xo and λo

need substituting into H):

m1 = det

[
0 −1
−1 2

]
= −1, m2 = det

 0 −1 −1
−1 2 0
−1 0 2

 = −4.

All negative, and since there is one equality constraint (Ne = 1) the sign of
(−1)Ne is negative too.

Thus S1 provides the sought minimum.
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Back to generation optimisation
The previous two-generator case revisited with the KKT equations

We are of course looking at the G1+G2 combination, thus the problem is

minimise f (Pg1,Pg2) = c1(Pg1) + c2(Pg2)

s.t. Pg1 + Pg2 = P̂e , Pg1,min ≤ Pg1 ≤ Pg1,max , Pg2,min ≤ Pg2 ≤ Pg2,max .

Maxima (preliminaries):
Pg1min : 20;

Pg1max : 100;

Pgo1 : 80;

ro1 : 3;

rml1 : 5;

Pg2min : 5;

Pg2max : 50;

Pgo2 : 35;

ro2 : 3.5;

rml2 : 8;

k11 : (rml1*Pgo1^2-ro1*Pg1min*(2*Pgo1-Pg1min))/(Pgo1-Pg1min)^2;

k21 : 2*Pgo1*(ro1-rml1)/(Pgo1-Pg1min)^2;

k31 : (rml1-ro1)/(Pgo1-Pg1min)^2;

k12 : (rml2*Pgo2^2-ro2*Pg2min*(2*Pgo2-Pg2min))/(Pgo2-Pg2min)^2;

k22 : 2*Pgo2*(ro2-rml2)/(Pgo2-Pg2min)^2;

k32 : (rml2-ro2)/(Pgo2-Pg2min)^2;

c1 : k11*Pg1+k21*Pg1^2+k31*Pg1^3;

c2 : k12*Pg2+k22*Pg2^2+k32*Pg2^3;

f : c1+c2;
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Back to generation optimisation
The previous two-generator case revisited with the KKT equations

Maxima (we consider the two cases with P̂e equal to 70 and 100):

/* Set Pe to the desired value, 70 or 100 for the two cases shown */
Pe : 70;

g : Pg1+Pg2-Pe;
h1 : Pg1-Pg1min;
h2 : Pg1max-Pg1;
h3 : Pg2-Pg2min;
h4 : Pg2max-Pg2;

L : f+lambda*g+mu1*h1+mu2*h2+mu3*h3+mu4*h4;

KKTeqs : [diff(L,Pg1),diff(L,Pg2),
diff(L,lambda),
mu1*diff(L,mu1),mu2*diff(L,mu2),mu3*diff(L,mu3),mu4*diff(L,mu4)];

S : solve(KKTeqs,[Pg1,Pg2,lambda,mu1,mu2,mu3,mu4]);

for i:1 thru length(%rnum_list) do S:subst(t[i],%rnum_list[i],S);
float(S);
fvals : float(makelist(subst(S[i],f),i,1,length(S)));
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Back to generation optimisation
The previous two-generator case revisited with the KKT equations

Results for P̂e = 70:
Pg1 Pg2 λ µ1 µ2 µ3 µ4 f

20.00 50.00 any −λ− 11
3 0.00 0.00 λ + 97

8 331.25 left extremum
51.58 18.42 -1.82 0.00 0.00 0.00 0.00 267.67 local max
40.09 29.91 -2.11 0.00 0.00 0.00 0.00 264.30 S1
100.00 -30.00 -44.12 0.00 -38.68 0.00 0.00 -416.52 infeasible
65.00 5.00 -2.04 0.00 0.00 -4.46 0.00 243.13 Sopt

Note that the left extremum cannot be a bound minimum, while the right
one actually is.

Homework: check and comment (as was done here) the case P̂e = 100.
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Lecture 11 (2P)

Previous homework solution

Classroom practice

Power and frequency control
- primary, secondary and tertiary regulation -

Some words on the active generators' pool determination
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Previous homework solution
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Previous homework solution
The two-generator case revisited with the KKT equations

Results for P̂e = 100:
Pg1 Pg2 λ µ1 µ2 µ3 µ4 f

89.75 10.25 -4.02 0.00 0.00 0.00 0.00 341.26 local max
69.42 30.58 -2.25 0.00 0.00 0.00 0.00 322.59 Sopt
20.00 80.00 -49.63 45.95 0.00 0.00 0.00 1190.00 infeasible
100.00 0.00 -9.63 0.00 -4.18 0.00 0.00 322.22 infeasible
95.00 5.00 -4.71 0.00 0.00 -1.79 0.00 336.88 right extremum
50.00 50.00 -1.83 0.00 0.00 0.00 10.29 406.25 left extremum

Note that the left extremum cannot be a bound minimum, while the right
one could but is not.
Never forget that the KKT equations not only are necessary conditions, but
just provide candidate optima: always check the solutions!
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Classroom practice
Power and frequency control

- primary, secondary and tertiary regulation -
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Lessons to learn
i.e., just one slide for this lecture's objectives

Understand the interactions of primary/secondary control and power
scheduling (tertiary) control.

Brie�y discuss the possible objectives to pursue, so as to appreciate the
problem complexity.

Envisage the possible (and somehow expected) impact of massive distributed
generation.

Note that this covers the second of the three parts in which we have split the
problem.
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Some words on the active
generators' pool determination
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Just a sketch of the problem
i.e., the third of the three parts in which we have split the original one

The scenario can be very complex, also involving contractual/regulatory facts
that of course do not �t in this treatise.

In extreme synthesis, two extrema can be envisaged;

the pool is pre-determined for each period, for example as per stipulated
contracts, and thus is taken by any optimisation as an a priori information;
for each generator thet is inactive (active) when the optimisation problem is to
be solved, the time needed for activating (deactivating) it is known or
estimated, together with the cost of the activation (deactivation) operation.

The second situation makes the problem very challenging, but we cannot
even scratch its surface. Knowing the panorama illustrated so far is
considered enough for this course.
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Lecture 12 (2L)

Load �ow

The basics
Problem formulation and solution method
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The basics
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Problem statement
Preliminaries

Prior to entering the subject, we need to review two basic concepts:
how power is transferred from a generator to the network
⇒ machine angle,
and how the e�ects of generators are combined
⇒ network admittance matrix.

Since we are dealing with AC networks, we need to abandon the purely
energetic approach (no voltages or currents) taken so far, and adopt a
phasor-oriented vision.

Without impairing the conveyed message, we also adopt for the target of this
course the following simpli�cations:

we have a single-voltage network (no transformers),
we consider a single-ohase (or equivalently, a perfectly balanced mutiphase)
system,
the amplitude of the voltage produced by each generator is controlled ideally,
and �nally we assume a prevailing network, i.e., one in which all the generators
are individually so small compared to the union of the others that each of
them sees the network voltage as a �xed phasor.

Of course the network frequency is controlled (we now know how).
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Preliminaries
Generator-to-network power transfer

Let V n = V (phase 0) be the network voltage phasor (recall that complex
numbers are underlined).

Suppose that the generator voltage has amplitude controlled to be V , thus
taking the form

V g = V (cos δ + j sin δ)

where δ is the machine angle (w.r.t. the network).

Let �nally Y gn = Ggn − jBgn � mind the minus! � be the admittance of the
generator�network connection.

Then, some Maxima gives us the active and reactive power (P and Q,
respectively) �owing from the generator to the network:

Vn : V;
Vg : V*cos(d)+%i*V*sin(d);
Ygn : G-%i*B;
Ign : (Vg-Vn)*Ygn;
Sgn : Vg*conjugate(Ign);
P : trigsimp(realpart(Sgn));
Q : trigsimp(imagpart(Sgn));
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Preliminaries
Generator-to-network power transfer

We have
P = (G (1− cos δ) + B sin δ)V 2,
Q = (B(1− cos δ)− G sin δ)V 2.

Thus, varying δ one can control P, and Q will follow as a consequence.

To control both P and Q one may for example act on the excitation voltage.
To see that, we can redo the same computations with the amplitude of V g

set to Vg instead of V , and we obtain

P = GV 2
g + (B sin δ − G cos δ)V Vg ,

Q = BV 2
g − (G sin δ + B cos δ)V Vg .

Reactive power in a network is controlled in many other ways. In this course
we do not deal with reactive power control.

Su�ce thus here to say that to govern its power transfer to the network, a
generator varies its δ with transient accelerations or decelerations...

...that however do not in�uence the network frequency, thus V n, given the
prevailing network hypothesis.
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The basics
Network-related problems: LF and OPF

So far, we have been dealing with the problem of optimising the generation of
the required power.

However, generating some power here or there requires to use the
transmission lines in a di�erent manner.

We need to ensure that none of them gets overloaded, and if possible to
account � when computing the generation cost � also for the power lost in
the transmission process itself.

In other words, we need to check how power �ows in the network, and this
problem has been historically given two names:

the Load Flow (LF) problem, on which we are going to say some words,
and the Optimal Power Flow (OPF) problem, that we shall just mention.

Before entering LF, however, we need to revise the concept of (network)
admittance matrix.
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The basics
Network-admittance matrix (and some de�nitions)

Consider a network with nB nodes or, to adopt the speci�c jargon of the
addressed problems, nB busses. Let V i be the voltage at bus i and I i the
current injected in it by the locally connected generator(s) or drawn from it
by the (local) bus load(s). Always recall that we are operating with phasors.

In general each bus is connected to others via lines. Let y
ij

= gij − jbij be the

complex admittance of the line connecting busses i and j , of course with
i 6= j (the reason for using lowercase letters here will become clear very soon).

Also, a bus may exhibit an admittance to ground. If this is true for bus i , we
shall denote that admittance by y

ii
= gii − jbii .

Finally, some busses have at least one generator attached to them, and will
be termed Generator (G) busses. The other busses carry only loads that
absorb a certain amount of active power P and reactive power Q; these are
called Load (L) busses or, more frequently, PQ busses.

We need to describe the network by a matrix that will then be useful for LF,
and is called the admittance matrix.
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The basics
Admittance matrix

The admittance matrix Y is created by

starting from the usual representation of a network containing voltage

generators and impedances (there is a more synthetic formalism used in power
network engineering, called the one- or single-line diagram, but we do not have
the time to treat it),
injecting a current I i in each bus i and computing the so induced voltages V j ,
in all the nodes,
indicating by Y ij (uppercase, notice) the I i/V j ratio,
and �nally assembling Y as

Y = [Y ij ] =

 y
ii

+
nB∑

j=1,j 6=i
y
ij

for the diagonal elements,

−y
ij

for the other elements,

It should now be clear why we have used lowercase letters. Let us see an
example to con�rm our comprehension.
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The basics
Admittance matrix � an example

Consider the 4-busses network shown below:

Remove all generators and loads, denote by V i the voltage at the i-th bus,
inject in each bus a current I i , write the nodal equations (KCL), and solve for
the injected nodal currents. You have three minutes, then we do it together.
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The basics
Admittance matrix � an example

Network with bus voltages and injected currents:

Nodal equations (KCL) for busses 1�4:

I 1 = y
12

(V 1 − V 2) + y
13

(V 1 − V 3)

I 2 = y
12

(V 2 − V 1) + y
23

(V 2 − V 3)

I 3 = y
23

(V 3 − V 2) + y
13

(V 3 − V 1) + y
34

(V 3 − V 4)

I 4 = y
34

(V 4 − V 3) + y
44
V 4

Note that obviously y
ij

= y
ji
, thus Y is symmetric.
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The basics
Admittance matrix � an example

Now start from the KCLs

I
1

= y
12

(V
1
− V

2
) + y

13
(V

1
− V

3
)

I
2

= y
12

(V
2
− V

1
) + y

23
(V

2
− V

3
)

I
3

= y
23

(V
3
− V

2
) + y

13
(V

3
− V

1
) + y

34
(V

3
− V

4
)

I
4

= y
34

(V
4
− V

3
) + y

44
V

4

and express Y:
I 1
I 2
I 3
I 4

 =


y
12

+ y
13

−y
12

−y
13

0

−y
12

y
12

+ y
23

−y
23

0

−y
13

−y
23

y
13

+ y
23

+ y
34

−y
34

0 0 −y
34

y
34

+ y
44



V 1

V 2

V 3

V 4


Verify the rule and convince yourselves (30 seconds):

Y = [Y ij ] =

 y
ii

+
nB∑

j=1,j 6=i
y
ij

for the diagonal elements,

−y
ij

for the other elements,
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The basics
Admittance matrix

The admittance matrix can also be used to compute the power injected in all
busses if voltages are known, as apparently

V = Y−1I

where V and I are respectively the vectors of bus voltages and injected
currents; matrix Y−1 is also called the network (or nodal, or bus) impedance
matrix, and denoted by Z.

Therefore, knowing the bus voltage phasors, one can obtain the complex
power injected at each bus as

S = V ◦ I ∗ = V ◦ (YV )∗

where, remember, ◦ denotes the Schur product, and ∗ the complex conjugate.

Let us see here too an example, that will lead us to formulate the LF problem.
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The problem
An introductory example

Consider a network with two busses, and take V 1 as phase reference (i.e.,
assume its phase is zero). Denote by δ21 the di�erence between the phases of
V 2 and V 1 � i.e., the phase of V 2 is δ21 � and go for Maxima:

Y : matrix([G11-%i*B11,G12-%i*B12],[G12-%i*B12,G22-%i*B22]);
V : matrix([V1],[V2*(cos(d21)+%i*sin(d21))]);
I : Y.V;
S : V*conjugate(I);
P : ratsimp(realpart(S));
Q : ratsimp(imagpart(S));

We obtain for the injected (active and reactive) powers

P1 = G11V
2
1 + V1V2 (G12 cos δ21 + B12 sin δ21)

Q1 = B11V
2
1 + V1V2 (−G12 sin δ21 + B12 cos δ21)

P2 = G22V
2
2 + V1V2 (−G12 cos δ21 − B12 sin δ21)

Q2 = B22V
2
2 + V1V2 (G12 sin δ21 − B12 cos δ21)

Alberto Leva Automation of Energy Systems 209 / 282



Load Flow
The problem per exemplum

In the example just treated, we ended up with four equations providing P1,2

and Q1,2, i.e., the (signed) active and reactive power injected at each of the
two busses, based on knowledge of their voltage phasors (and of course of the
network parameters).

However, we could also view the problem in another way.

Suppose for example that bus 1 is a Load (PQ) bus, and bus 2 a Generator
(G) one. Suppose to know the active power demand from the load
(remember the forecasts for tertiary control?) and that loads are managed so
that the reactive demand is maintained within a prescribed power factor.
Suppose, in one word, to know P1 and Q1.

Suppose then that the active power generation at bus 2 is controlled
(remember how Pm was managed to match Pe via power/frequency control?)
and the same is true for the voltage magnitude V2�not for the phase, as this
is the means to release power. Actually we do not deal here with voltage
control, leaving the matter to detailed courses, so just assume the job done.

Again, take the phase of V 1 (�the network� as opposed to the generator) as
reference, and � remember � assume ideal (or almost ideal) frequency control.
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Load Flow
The problem per exemplum

Given all the above, we are dealing again with the equations

P1 = G11V
2

1 + V1V2 (G12 cos δ21 + B12 sin δ21)
Q1 = B11V

2

1 + V1V2 (−G12 sin δ21 + B12 cos δ21)
P2 = G22V

2

2 + V1V2 (−G12 cos δ21 − B12 sin δ21)
Q2 = B22V

2

2 + V1V2 (G12 sin δ21 − B12 cos δ21)

but in the three unknowns Q2, δ21, V2. Note that also in the example the
free quantities were in fact three, as V1, V2 and δ21 decided all of the rest.

To determine all the nodal voltage phasors, thus, we could write

the balance equation for active and reactive power at bus 1 (PQ),
and the balance equation for active power at bus 2 (G).

This is a nutshell-size example of LF problem. Let us now abstract and
generalise.
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Load Flow
Problem statement

Given a network composed of

nG generator (G) busses,
where the (injected) active power and the voltage amplitude are known,
plus nPQ load (PQ) busses,
where the (drawn) active and reactive powers are known,
plus one bus, called the slack (S) bus,
where the voltage amplitude and phase are known,

determine all the voltage phasors (magnitudes and phases).

Note: of course nG + nPQ + 1 equals the total number nB of busses, but in
the following we shall preferably count busses by type.
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Load Flow
Unknowns, equations, and solution

Unknowns:

2(nG + nPQ + 1), i.e., all voltage phasors' magnitudes and phases
minus nG because at G busses the voltage amplitude is known
minus 2 because at the S bus both voltage amplitude and phase are known,

⇒ for a total of nG + 2nPQ .

Equations:

nG balances of active power at G busses,
plus nPQ , balances of active power at PQ busses
plus nPQ , balances of reactive power at PQ busses,

⇒ for a total of nG + 2nPQ .

Solution:

the problem is not dynamic, apparently,
but at the same time highly nonlinear;
many numerical methods were proposed and are continuously studied,
ranging from standard ones (e.g., Newton-Raphson) through modi�cations of
them to completely ad hoc ones (the matter is not addressed in this course).
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Load Flow
Equations and meaning of the slack bus

All equations are active or reactive power balances, and take the form

Pi =
∑nB

j=1 Vi Vj (Gij cos δij + Bij sin δij) ,

Qi =
∑nB

j=1 Vi Vj (Gij sin δij − Bij cos δij) ,

where Pi and Qi are respectively the active and reactive power injected or
drawn at bus i , Gij − jBij is element (i , j) of the bus admittance matrix Y,
and δij the phase di�erences between the voltages at bus i and bus j , their
amplitudes being Vi and Vj .

As for the slack bus,

it can be viewed as a reference, mutatis mutandis pretty much like the ground
when solving a circuit,
and additionally represent the connection to a larger � e.g., cross-national �
network, viewed as a �xed phasor since that network can be assumed to have
prevailing power w.r.t. the considered � e.g., national � one , like the
considered one has w.r.t. any individual generator.
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Load Flow
Role in the overall network control

Once primary/secondary control is in place and tertiary optimisation is done,
use LF to check that no line is overloaded by also computing currents. If said
check fails, modify the optimised solution to a suboptimal one �near� to the
optimal but ful�lling the overload avoidance constraints.

Express the mentioned overload avoidance conditions and plug them into
tertiary optimisation as additional constraints. Note that this signi�cantly
complicates the optimisation problem as for constraint..

On the same front, use LF to compute a transmission cost in terms of power
lost over the lines, and plug this into tertiary optimisation. Also doing so
complicates the optimisation, this time however by modifying the cost
function.

Let us proceed with an example.
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Load Flow
Example

Write the LF equations for the network

You have �ve minutes, then we do it together.
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Load Flow
Example � solution

First (although not strictly necessary, one could directly reason with its
elements) write the bus admittance matrix:

Y =


Y 11 Y 12 Y 13 Y 14 Y 1s

Y 12 Y 22 Y 23 Y 24 Y 2s

Y 13 Y 23 Y 33 Y 34 Y 3s

Y 14 Y 24 Y 34 Y 44 Y 4s

Y 1s Y 2s Y 3s Y 4s Y ss



=


y
12

+ y
13

−y
12

−y
13

0 0

−y
12

y
12

+ y
23

−y
23

0 0

−y
13

−y
23

y
13

+ y
23

+ y
34

−y
34

0

0 0 −y
34

y
34

+ y
44
−y

4s
0 0 0 −y

4s
y
4s


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Load Flow
Example � solution

We have nG = 2 and nPQ = 2; nB = nG + nPQ + 1 = 2 + 2 + 1 = 5.

There are nG + 2nPQ = 6 unknowns: V2, δ2s , V3, δ3s , δ1s , and δ4s .

The six equations are the two P balances at the G busses 1 and 4, the two P
balances at the PQ busses 2 and 3, and the two Q balances at the same PQ
busses. This yields

P1 = V 2
1 (G12 + G13)− V1 V2 (G12 cos δ12 + B12 sin δ12)− Vi V3 (G13 cos δ13 + B13 sin δ13)

P4 = V 2
4 (G34 + G44)− V3 V4 (G34 cos δ34 + B34 sin δ34)− V4 Vs (G4s cos δ4s + B4s sin δ4s)

P2 = V 2
2 (G12 + G23)− V1 V2 (G12 cos δ12 + B12 sin δ12)− V2 V3 (G23 cos δ23 + B23 sin δ23)

Q2 = −V 2
2 (B12 + B23)− V1 V2 (G12 sin δ12 − B12 cos δ12)− V2 V3 (G23 sin δ23 − B23 cos δ23)

P3 = V 2
3 (G13 + G23 + G34) + V1 V3 (G13 cos δ13 + B13 sin δ13)

+V2 V3 (G23 cos δ23 + B23 sin δ23) + V3 V4 (G34 cos δ34 + B34 sin δ34)

Q3 = −V 2
3 (B13 + B23 + B34) + V1 V3 (G13 sin δ13 − B13 cos δ13)

+V2 V3 (G23 sin δ23 − B23 cos δ23) + V3 V4 (G34 sin δ34 − B34 cos δ34)

where diagonal-originated terms were put at the beginning of summations for
readability (clearly sin δii = 0 and cos δii = 1 ∀ i).
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Conclusions

We now have a reasonably complete panorama of network control and
optimisation, excluding just reactive power control, collapse avoidance and
contingency management at large. This is enough for our purposes, since we
have caught the concepts and so as to see any detail � taught in specialised
courses � within a unitary framework.

We shall thus proceed with a practice sessions, thereby concluding the
�electric� part of the course.

No homework, but remember the bene�ts of reviewing your notes.
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Lecture 13 (2P)

Classroom practice

Load �ow and its relationships with network control
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Lessons to learn
i.e., just one slide for this lecture's objectives

Become familiar with LF.

Avoid the most common mistakes, or � better � ensure that the meaning of
all elements is well understood.

Envisage the relationships between LF and primary/secondary/tertiary
network control.
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Lecture 14 (2L)

Introduction to thermal systems

Foreword and hypotheses
Main components of heat networks and HVAC systems
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Foreword and hypotheses
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Foreword and hypotheses
Involved materials

We shall treat thermo-vector �uids (e.g., water �owing in heating elements)
as incompressible, and with constant speci�c heat,

and the same will be done for the air contained in buildings (pressure is
practically the atmospheric one):

thus, we shall not treat centralised air treatment systems like AHUs (Air
Handling Units) and air-based heat distribution.

Solid materials will come into play for containments, and here too simple
descriptions (constant and uniform properties) will be used:

always recall our system-level attitude.
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Foreword and hypotheses
Main elements

Fluid transport, motion and �ow control (pipes, pumps, valves);

heat exchangers (�uid/�uid and �uid/air);

thermal machines (boilers, chillers, heat pumps);

containment elements and associated thermal exchanges (walls, openings,
conductive/convective/radiative exchanges);

and � not in this lecture � control elements (sensors, actuators, controllers).

Also, we shall take an energy-based approach, using electric equivalents when
possible and refraining from the description of hydraulics, mechanics and so
forth.

Note: for simplicity, unidirectional �uid �ow (quite realistic, anyway) will be
assumed.
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Main components of heat networks
and HVAC systems
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Fluid transport components
Pipes

Hydraulic equation (review, ∆z in-out height di�erence, ρ �uid density):

∆p =
KT

ρ
w2 − ρg∆z

Energy balance (T assumed uniform and equal to To , V pipe volume, c �uid
speci�c heat):

ρVcṪo = cw(Ti − To) + Q
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Fluid transport components
Pumps

Centrifugal Volumetric

The command n prescribes the pump speed, typically expressed in rpm.

Mass and volume �owrate (here proportional by ρ) are denoted by w and q,
respectively.
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Fluid transport components
Pumps

Centrifugal pump hydraulics (given the �uid):

∆p = H0(n)− H1(n)w2

where, given a nominal rpm n0 and correspondingly H0 = H0 e H1 = H1,

H0(n) = H0
n

n0
, H1(n) = H1

n

n0
.

Volumetric pump hydraulics (given the �uid):

w = Kn

where K is a characteristic parameter.
As for thermal aspects, in both cases (neglecting mechanical heating)

To = Ti
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Fluid transport components
Valves

Hydraulic equation (review):

w = CvmaxΦ(x)
√

∆p

Energy balance (both storage and exchanges neglected):

To = Ti
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Heat exchangers
Fluid stream � lumped (FiniteVolumes) model

For incompressible �uids, thermal equations are decoupled from hydraulics
(constant density).

Having decided the �ow direction, the equation for each element of the FV
description is thus

ρcVk Ṫk = wcTk.1 − wcTk + Qk , T−1 = Ti , To = TN ,

where the Vk are the lumps' volumes, often (for us, always) equal.
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Heat exchangers
Metal wall

Dividing the metal wall in the same way as the stream(s),

ρmcmVmk Ṫk = Qak + Qbk

where the �m� subscript stands for �metal�.

Axial conduction in the metal is neglected, which is realistic enough for our
purposes.
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Heat exchangers
Convective exchanges

Finally comes the (convective) exchange element, that adopting again the
same discretisation yields

Qfk = −Qmk = γSk(Tfk − Tmk)

where the � f � and �m� subscript stands for ��uid� and �metal�, respectively.
The Sk are the lumps' surfaces and γ is the thermal exchange coe�cient,
either constant (as we shall assume) or dependent on the �ow conditions.

The connections realise the heat exchanger con�guration (e.g., co- or
counter-current).
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Thermal machines
A classi�cation and a hypothesis

For our purposes, we distinguish two types of machines:

those injecting heat into a �uid by combustion or analogous sources (e.g.,
solar radiation) that can possibly modulated (e.g., by operating a fuel valve of
focusing/defocusing a mirror); these include boilers, thermal solar panels, and
similar objects;
those employing work to transfer heat from a cold to a hot source; these
include all types of heat pumps.

At a system level, thermal machines can be represented as static relationships
coupled to a simple (for us, �rst-order) dynamics to represent the internal
storage, or in other words connected to the �uid �residence time�.

In such descriptions the �uid(s) see the machine operation as impressed heat
rates: possible relationships of that rate with temperatures are represented as
static characteristics in the machine model.
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Thermal machines
Type 1 machines � example: boiler

Denoting by w the �uid �owrate, by wf the fuel one, by HH its calori�c
power, by V the volume of contained �uid and by ηc a �combustion�
e�ciency, one can simply write with self-explanatory notation

ρcV Ṫo = wc(Ti − To) + wfHHηc(w ,To)

where ηc(w ,To), or just ηc(w) depending on the detail level, provides the
machine's e�ciency curve.

Suggestion: try to reformulate for a thermal solar captor where the captured
radiative �ux can be partialised.
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Thermal machines
Type 2 machines � example: heat pump

Statically, the heat rate balance is apparently QH = QC + W , where W can
come e.g. from a compressor (for brevity we do not treat more articulated
cases such as absorption cycles).

Machines like that here schematised are statically described by the so called
Coe�cient Of Performance (COP), de�ned as �useful e�ect over needed
work�. Thus, since one may be interested in using the machine for heating or
for cooling, we have

COPheat =
QH

W
, COPcool =

QC

W

Observe that

QH

W
=

QC + W

W
⇒ COPheat = COPcool + 1.
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Thermal machines
Type 2 machines � example: heat pump

If the machine operates at the maximum theoretical (Carnot) e�ciency,

QH

TH

=
QC

TC

Thus, theoretical (Carnot) values for COPheat and COPcool can be de�ned as

COPC
heat =

TH

TH − TC

, COPC
cool =

TC

TH − TC

,

where, remember, absolute (Kelvin) temperatures are to be used.

To represent real machines, e�ciencies are introduced, hence

COPheat = ηh
TH

TH − TC

, COPcool = ηc
TC

TH − TC

, 0 < ηh,c < 1,

where ηh and ηc can be considered constant (as we shall do) or be made
dependent on temperatures.
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Thermal machines
Type 2 machines � example: heat pump

To obtain a simple (system-level) dynamic model, associate two thermal
capacities CH,C to the hot and cold sources (i.e., considering the classical
refrigerator cycle as a representative example, to the condensed and the
evaporator, respectively). This, together with the previous COP
considerations, yields for the heating case

CH ṪH = QH + QHeh

CC ṪC = QC + QCec

COPheat = ηh
TH

TH−TC
QH = COPheatW
QH = QC + W

where QHeh and QCec are the heat rates entering the H and C sources from
the environments to which either of the two is exposed (most frequently, by
convection); W is here an input.
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Thermal machines
Type 2 machines � example: heat pump

Modelica example:
model coph
parameter Real Wmax=1000; parameter Real Cc=1000; parameter Real Ch=200;
parameter Real Gec=100; parameter Real Geh=100;
Real Tc(start=273.15+10); // MEMENTO: Kelvin temperatures trhoughout!
Real Th(start=273.15+15);
Real Tec,Teh,Qc,Qh,Qcec,Qheh,W,COPh,eta,cmd;

equation
Ch*der(Th) = Qh - Qheh;
Qheh = Geh*(Th-Teh);
Cc*der(Tc) = -Qc + Qcec;
Qcec = Gec*(Tec-Tc);
COPh = Th/(Th-Tc)*eta;
Qh = COPh*W;
Qh = Qc+W;
W = Wmax*cmd; // W is an input, cmd its command
Tec = 273.15+5; // Boundary conditions
Teh = 273.15+20;
eta = 0.6;
cmd = 0.9;

end coph;

Alberto Leva Automation of Energy Systems 239 / 282



Thermal machines
Type 2 machines � example: heat pump

Simulation results example:

Homework 1: change parameters (thermal capacities, max power, coe�cients
for convective exchanges, e�ciency); observe how the results are a�ected,
and interpret.

Homework 2: reformulate for a cooling case.
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Containment elements and associated exchanges

Containment elements are simple conduction ones.

Such elements are possibly (and in fact most frequently) composed of a series
of layers of di�erent materials (i.e., with di�erent speci�c heats and
conductivities)...

...so that, anticipating some concepts analysed later on, their electric
equivalent is a series of RC cells.

Glazing may require speci�c modelling (for example, windows often need to
account for the thermal power transmitted by radiation), but we do not deal
with such details in this course.
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Containment elements and associated exchanges

A speci�c case is the e�ect of air renovation, on which we conversely spend
some words.

Denoting by wr the renovation air �ow rate, and with Ti and Te the internal
and external temperatures, respectively, we have

Qe→i = wrcaTe

Qi→e = wrcaTi

where ca is the air speci�c heat.

Hence, summing the above with the correct signs, the net external-to-internal
heat rate is

Qei = Gei (Te − Ti ), Gei = wrca

where Gei plays the role of an equivalent thermal conductance, governed by
the renovation �owrate.
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Lecture 15 (2L)

Heat networks and HVAC systems

Electric equivalents
System-level modelling for control
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Electric equivalents
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Electric equivalents
Phenomena and components

Energy storage ↔ capacitor, and under our hypotheses .

voltage [V ] ↔ temperature [◦K ],
current [A] = [C/s] ↔ thermal power or �heat rate� [W ] = [J/s]
electric capacity [F ] = [C/V ] ↔ thermal capacity [J/◦K ];

dimensional consistency check:

I = CE
dV

dt
Q = CT

dT

dt

[C/s] = [C/V ] [V /s] [J/s] = [J/◦K ] [◦K/s]

For solids or incompressible �uids, both with constant speci�c heat c
[J/kg◦K ] � our hypotheses � the thermal capacity CT (we shall hereinafter
drop the subscript wherever possible) is expressed as ρcV , where ρ is the
solid or �uid density, and V the considered control volume.
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Electric equivalents
Phenomena and components

Energy transfer without mass transfer, proportional to a temperature
di�erence ↔ resistor and

electric conductance [S ] = [A/V ] ↔ thermal conductance [W /◦K ];

dimensional consistency check:

I = GE ∆V Q = GT ∆T

[A] = [A/V ] [V ] [W ] = [W /◦K ] [◦K ]

This covers (simple) conduction and convection; radiation involves the fourth
power of temperatures, but most often for our cases can be approximated
with a prescribed heat rate�i.e., a current generator.

The thermal conductance G (again, subscript dropped from now on) is
typically expressed as γS , where S is the boundary surface of the considered
control volume and γ [W /m2◦K ] is called �thermal exchange coe�cient�.
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Electric equivalents
Phenomena and components

Energy transfer associated to (�uid) mass transfer ↔ current generator
commanded by a (source) temperature, with a proportional law where the
proportionality coe�cient is the involved mass �owrate times the �uid
speci�c heat;

dimensional consistency check:

I = k Vsrc Q = wc Tsrc

[C/s] = [C/Vs] [V ] [J/s] = [kg/s][J/kg◦K ] [◦K ]

Observe that this is di�erent from energy transfer without mass transfer, as
only one temperature � not a di�erence � is involved; also, here changing the
sign of w means �the source is on the other side� (but for our problems we do
not need to account for �ow reversal).

Recall that we assume hydraulics to be decoupled from thermal phenomena,
hence when dealing with the latter we can consider �owrates to be known.
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System-level modelling for control
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System-level modelling for control
Purpose and general ideas

Purpose:

obtain simple models catching the system behaviour without delving into
individual component details (as usual).

General ideas:

limit the scope to energy generation/transfer/storage;
adopt the electric equivalent approach just sketched,
ether explicitly or by just using their equations' structuring.

The easiest way to understand the matter is to work out a couple of simple
examples, which by the way involves some Modelica practice.
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System-level modelling for control
Example 1

Single thermal zone with

exchanging walls,
air renovation by direct connection to the external environment,
a reversible heat pump for heating or cooling,
an additional electric heater,
and internally generated power (people, computers, and so on).
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System-level modelling for control
Example 2

Simple heat network with

one centralised heater,
multiple heat exchangers modelled as prescribed thermal loads
(in turn serving some building temperature control),
and an idealised primary loop �owrate control.
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System-level modelling for control
Possible control strategies for examples 1 and 2

Example 1 (thermal zone):

one temperature controller with signed power output (+ heat, - cool) and
possibly a dead zone;
split-range output using the heat pump when cooling and �rst the pump, then
the electric device (less e�cient) when heating;
if possible, feedforward compensation for the external temperature, the
renovation �owrate, and the internally generated power.

Example 2 (heat network):

�owrate control;
heater outlet temperature control;
computation of the two set points so as to satisfy all the thermal loads while
minimising piping losses.

We apparently need control structures, which we shall review and apply in
the next lecture.

No homework, but please review your notes. Next time, practice session
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Lecture 16 (2P)

Classroom practice

Modelling and basic control of heat networks and HVAC systems
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Lessons to learn
i.e., just one slide for this lecture's objectives

Work out some more examples than those shown last time.

Apply standard control techniques, basically of the single-loop type.

Envisage the necessary extensions as for the control scheme structuring.

Alberto Leva Automation of Energy Systems 254 / 282



Lecture 17 (2L)

Main control structures for energy systems

Control structures stricto sensu

Actuation schemes
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Main control structures for energy systems
Foreword

We shall now review the major structures of interest, i.e.,

feedforward compensation,
cascade control,
multivariable control with decoupling (in the 2× 2 case, generalisation is
straightforward),
Smith predictor,
Internal Model Control (IMC).

We shall also review some relevant actuation schemes, i.e.,

Time Division Output (TDO),
split range,
daisy-chaining.
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Control structures stricto sensu
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Feedforward compensation

Purpose: reduce the in�uence on the controlled varuable y of a measurable
disturbance d(t) acting on the forward path of a loop.

How: by computing C (s) so that the transfer function d to y be zero, i.e.,

H(s) + M(s)C (s)P(s)

1 + R(s)P(s)
= 0, ⇒ C (s) = − H(s)

M(s)P(s)
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Feedforward compensation

The so found compensator is �ideal�, and will be termed CID(s), as

CID(s) = − H(s)

M(s)P(s)

may have more zeroes than poles (not realisable),
and/or have RHP poles (i.e., produce critical cancellations).

In such cases one has to obtain from CID(s) a real compensator CR(s)

omitting zeroes and/or adding poles,
and in any case not introducing RHP poles.

This will yield a compensation �valid up to a certain frequency�, namely that
for which CR(jω) starts to di�er �signi�cantly� from CID(jω), accounting for
both magnitude and phase.
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Cascade control

Purpose: mitigate the e�ects of a disturbance (dI ) the e�ects of which appear
on some measurable process variable (yI ) responding to that disturbance
�before� � in a dynamic sense � the primary controlled variable (yE ).

How: by closing a �fast� inner (internal, secondary) loop so as to hide both
the dynamics of PI and the e�ects of dI to the outer (external, primary) one.

Two remarks:

the scheme has the inherent cost of measuring yI ,
and is hardly of any use (i.e., a single-loop one could do the job as well) in the
absence of a signi�cant dI .
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Cascade control

Explanation of the scheme operation in the frequancy domain:

where LI = RIPI .

In practice, indicating by ωcI and ωcE the critical frequencies of the inner and
the outer loop, respectively, a minimum bandwidth separation of 0.5�1
decade is advised.

If this is accomplished, it is possible to (approximately but reliably) compute
ωcE as if the external (open) loop transfer function were just REPE .
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Cascade control

For the synthesis, thus, one can refer for the external loop to the scheme
above.

Overall, this leads to determining

RI based on PI only
and RE based on PE only (preserving of course the required band separation).
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Multivarlable control with decoupling

Purpose: address square MIMO interacting processes (a control input does
not in�uence only one controlled output).

How: by taking a two-step approach, namely

forst prepending to the process a decoupler so that the cascade of the teo be
diagonal,
and then closing one SISO loop per variable, synthesised with the known
techniques.

Note: as anticipated we treat the 2× 2 scheme, i.e., two inputs u1, u2 and
two outputs y1, y2; generalising to the generic n × n case is straightforward.
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Multivarlable control with decoupling

A 2× 2 MIMO process is described in the LTI framework as[
Y1(s)
Y2(s)

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
U1(s)
U2(s)

]
i.e., by the transfer matrix

P(s) =

[
P11(s) P12(s)
P21(s) P22(s)

]
In terms of block diagrams this means

{
Y1 = P11U1 + P12U2

Y2 = P21U1 + P22U2

⇒
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Multivarlable control with decoupling
The decoupling block

The purpose of D(s) is to realise the equivalence indicated below:

i.e., setting Y ′ = [Y1 Y2], U ′ = [U1 U2] e V ′ = [V1 V2],

Y = PU = PDV =

[
P11(s) 0

0 P22(s)

]
V

Therefore, D(s) is determined as

D(s) = P−1(s)

[
P11(s) 0

0 P22(s)

]
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Multivarlable control with decoupling
The decoupling block

Interpretation:

D =

[
P11 P12

P21 P22

]−1 [
P11 0
0 P22

]
hence

D−1 =

([
P11 P12

P21 P22

]−1 [
P11 0
0 P22

])−1

=

[
P11 0
0 P22

]−1 [
P11 P12

P21 P22

]

=
1

P11P22

[
P22 0
0 P11

] [
P11 P12

P21 P22

]

=
1

P11P22

[
P11P22 P12P22

P11P21 P11P22

]
=

[
1 P12/P11

P21/P22 1

]
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Multivarlable control with decoupling
The decoupling block

Carrying on, U = DV ⇒ V = D−1U, thus[
V1(s)
V2(s)

]
=

[
1 P12

P11
P21
P22

1

] [
U1(s)
U2(s)

]
⇒

{
V1 = U1 + P12

P11
U2

V2 = P21
P22

U1 + U2

In synthesis, then {
U1 = V1 − P12

P11
U2

U2 = V2 − P21
P22

U1

and the decoupler is described by the block diagram

whence the frequently encountered name �backward decoupling�.

Alberto Leva Automation of Energy Systems 267 / 282



Multivarlable control with decoupling
The decoupling block

The scheme above shows the backward decoupler operation by evidencing
how it nulli�es the net signal path from v1 to y2 (the sum of the read and tha
blue one); of course the same is true for the symmetric path.
Note; the same feasibility/stability ossues shown for feed�rward
compensation may arise, requiring to use approximated decoupling blocks and
thus limiting the band where decoupling is e�ective.
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Multivarlable control with decoupling
The overall scheme

The two controllers R1(s) and R2(s) are designed with known SISO
techniques, as if one were dealing with two independent processes having
transfer function P11(s) and P22(s), respectively
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Smith predictor

Purpose: address cases where the process has so large a delay that obtaining
a certain stability degree (e.g., a desired phase margin) requires to reduce
performance (e.g., response speed) unacceptably.

How: by observing that in the scheme above

Ŷ (s)

U(s)
= PR(s)

where the transfer function PR(s) is assumed rational.

Block C (s) can thus be synthesised with known methods, accounting only for
the �rational dynamics� of the process.
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Smith predictor

The scheme immediately yields

Ŷ (s)

W (s)
=

C (s)PR(s)

1 + C (s)PR(s)

Additionally, the �regulator� in the same scheme is equivalent to a feedback
one with transfer function

R(s) =
C (s)

1 + C (s)PR(s)(1− e−sτ )

thus

Y (s)

W (s)
=

R(s)PR(s)e−sτ

1 + R(s)PR(s)e−sτ

=

C(s)
1+C(s)PR (s)(1−e−sτ )PR(s)e−sτ

1 + C(s)
1+C(s)PR (s)(1−e−sτ )PR(s)e−sτ

= . . . =
C (s)PR(s)e−sτ

1 + C (s)PR(s)

Alberto Leva Automation of Energy Systems 271 / 282



Smith predictor

In synthesis, then,

Y (s)

W (s)
=

Ŷ (s)

W (s)
e−sτ

which means that synthesising C (s) based on PR(s) and using the Smith
predictor scheme, the obtained behaviour of y is the same as that of ŷ , just
delayed by τ .

Caveat:

the model has to be �more precise� than needed for mere feedback control
and disturbances need not to be too signi�cant,

otherwise ŷ ceases to be a good prediction of y , to the detriment of the
scheme operation.
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Internal Model Control

Purpose: obtain the regulator directly from a process model and one of the
desired closed-loop dynamics.

Most typical motivations:

standard synthesis method (e.g., used to derive PI/PID tuning rules);
easy adaptation of the controller to a (re-)estimated model.

How: by adopting the scheme above, which we shall now analyse.
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Internal Model Control

Consider the block diagram

where

P(s) is the transfer function of the process under control, which we assume to
be asymptotically stable (thus excluding integrating processes),
M(s) is the process model,
Q(s) and F (s) are asymptotically stable transfer function, at this stage
arbitrary,
W , D and N are the set point, a load disturbance, and a measurement noise,
Y and Ŷ are the true and nominal controlled variables, i.e., the outputs of the
process and the model, respectively.
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Internal Model Control

Note (keep the previous slide at hand) that the feedback signal is Y − Ŷ ,
which motivates the method's name in that the regulator contains a model of
the process explicitly.

Suppose that the model is perfect and there are neither disturbances nor
noise. In that case the scheme is open-loop, and

T (s) := Y (s)
Y ◦(s) = F (s)Q(s)M(s).

Suppose now also that it is possible to choose Q(s) as the exact inverse of
M(s), i.e. of P(s). In that case T (s) = F (s)M−1(s)M(s) = F (s), thus the
transfer function from set point to controlled variable can be chosen
arbitrarily.

Finally, suppose that d 6= 0 while still M(s) = P(s), n = 0 and
Q(s) = M−1(s).
Being Y (s)/D(s) = (1− F (s)Q(s)M(s))/(1 + F (s)Q(s)(P(s)−M(s)), if
F (s) = 1 d is rejected completely; otherwise, it is rejected asymptotically
provided that F (0) = 1.
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Internal Model Control

The IMC regulator is equivalent to the feedback one given by

R(s) =
F (s)Q(s)

1− F (s)Q(s)M(s)
.

The IMC synthesis method in the general case is a two-step procedure:

�rst Q(s) is chosen as as an approximated inverse of M(s), namely that of its
minimum-phase part;
then, the low-pass �lter F (s), called �IMC �lter�, is introduced; for simplicity,
F (s) is very often chosen of the �rst order and (of course) with unity gain, i.e.
F (s) = 1/(1 + sλ).

In this case, λ can be interpreted as the closed-loop time constant of the
control system if P(s) = M(s), and P(s) is minimum-phase. More in general,
it can be thought of as the dominant closed-loop desired time constant.
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Actuation schemes
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Time Division Output

Purpose: make an on/o� actuator behave like a modulating one.

Most typical motivations:

modulating high-power actuators may be impractical or even impossible;
even in the absence of the above problem, operating the actuator not at 100%
may reduce its e�ciency.

How: by deciding an actuation period Ta, small w.r.t. the process dynamics'
time scale, taking this as the sampling time for the (digital) controller, and
having the control signal u ∈ [0, 1] provide the actuator activation's duty
cycle.

Example: with Ta = 10 s, u = 0.6 means that in the sampling period the
actuator will be on for 6 s and then o� for 4 s.

Alberto Leva Automation of Energy Systems 278 / 282



Split range

Purpose: make two actuators behave like a single one by having each of them
act in a di�erent range of the control variable (whence the name).

Most typical motivation:

thermal system where a single controller uses two actuators, one for heating
and one for cooling.

How: denoting by u1 ∈ [0, 1] and u2 ∈ [0, 1] the two actuators and supposing
� without loss of generality � that the transition happens for u = 0, where
u ∈ [−1, 1] is the controller output, by simply setting

u1 =

{
u u ≥ 0
0 u < 0

u2 =

{
0 0 ≥ 0
−u u < 0

Note: sometimes a dead zone is introduced around u = 0 to avoid switching
in and out the two actuators too frequently.
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Daisy chaining

Purpose: have several actuators activated in sequence (the i + 1-th starting
to operate when the i-th has reached its maximum action).

Most typical motivation:

start with the most economic actuatoe (e.g., a heat pump) and have a less
economic one (e.g., an electric heater) intervene only if the �rst one is not
su�cient.

How: by using the diagram

that easily generalises to an arbitrary number of actuators.

Note:here too dead zones are sometimes introduced, for the same reason
mentioned above.
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Lecture 18 (2P)

Classroom practice

Control structures applied to thermal systems control
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Lessons to learn
i.e., just one slide for this lecture's objectives

Apply some of the analysed control structures to thermal systems.

Abstract a more general modus operandi for control structuring, also in a
view to addressing multi-domain problems.

Alberto Leva Automation of Energy Systems 282 / 282


	Automation of Energy Systems
	Course introduction
	Lecture 1

	Modelling principles
	Lecture 2
	Lecture 3

	Modelling framework
	Lecture 4

	Electric systems – power/frequency control
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8

	Electric systems – generation cost optimisation
	Lecture 9
	Lecture 10
	Lecture 11

	Electric systems – load flow
	Lecture 12
	Lecture 13

	Thermal systems – energy-based modelling
	Lecture 14
	Lecture 15
	Lecture 16

	Main control structures for energy systems
	Lecture 17
	Lecture 18


